Author
Listed:
- Yesen Sun
(Guangzhou University)
- Hong-liang Dai
(Guangzhou University)
- Lei Xu
(Zhejiang Geology and Mineral Technology Co., LTD)
- Abed Asaditaleshi
(Southern Illinois University)
- Atefeh Ahmadi Dehrashid
(University of Kurdistan
Kurdistan Studies Institute, University of Kurdistan)
- Rana Muhammad Adnan Ikram
(Guangzhou University)
- Hossein Moayedi
(Duy Tan University
Duy Tan University)
- Hossein Ahmadi Dehrashid
(University of Tehran)
- Quynh T. Thi
(Duy Tan University
Duy Tan University)
Abstract
The objective of this investigation is to produce maps identifying areas prone to landslides (LSMs) by utilizing multiple machine learning techniques, including the harmony search algorithm (HS), shuffled frog leaping algorithm (SFLA), evaporation rate water cycle algorithm (ERWCA), and whale optimization algorithm (WOA). To create a comprehensive inventory of landslide occurrences, high-resolution satellite imagery, topographic maps, historical records, and GPS data gathered through fieldwork were employed. In total, 402 known landslide sites were used for modeling and validating the landslide occurrences in the study area. Sixteen factors were integrated: topography, hydrology, soil type, geology, and ecology. The training dataset comprised 72% of all landslide locations, while the remaining 28% was used to validate the generated landslide occurrences. The different models were evaluated using the area under the receiver operating characteristic curve. The analysis of both the training and validation datasets was used to determine the model’s accuracy. To improve the performance of the multilayer perceptron neural network architecture, the HS, ERWCA, SFLA, and WOA algorithms were applied to improve its efficiency. The accuracy of the applied prediction models was evaluated using the area under the curve (AUC) measure before creating landslide vulnerability charts in a GIS framework. The results showed that the HS-MLP had the greatest estimated AUCs for population sizes in training databases equal to 50, with values of 0.9921 and 0.9828 for training databases and testing databases, respectively. Similar to this, in the training and testing databases, the AUC values for the ER_WCAMLP with a 200-swarm swarm size were determined to be 0.9998 and 0.9821, respectively. For population sizes of 150 and 500, respectively, the training and testing AUCs for the SFLA-MLP were determined to be 0.984 and 0.9821, and 0.9867 and 0.9873, respectively, for the WOA-MLP. The best solution was found after 50, 200, 150, and 500 iterations for the models that used the population in the best fit HS, ER_WCA, SFLA, and WOA algorithms, respectively. In light of these findings, managers and planners can benefit from this research's findings in pre-crisis management as it demonstrates how optimization algorithms have improved the neural network’s accuracy and performance in the evaluation and detection of problematic areas.
Suggested Citation
Yesen Sun & Hong-liang Dai & Lei Xu & Abed Asaditaleshi & Atefeh Ahmadi Dehrashid & Rana Muhammad Adnan Ikram & Hossein Moayedi & Hossein Ahmadi Dehrashid & Quynh T. Thi, 2025.
"Development of the artificial neural network’s swarm-based approaches predicting East Azerbaijan landslide susceptibility mapping,"
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6065-6102, March.
Handle:
RePEc:spr:endesu:v:27:y:2025:i:3:d:10.1007_s10668-023-04117-9
DOI: 10.1007/s10668-023-04117-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:3:d:10.1007_s10668-023-04117-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.