IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03293-y.html
   My bibliography  Save this article

Assessing the combined effect of PV panels’ shading and cool materials on building energy loads in different climates

Author

Listed:
  • Roza Vakilinezhad

    (Shiraz University)

  • Navid Ziaee

    (Art University of Isfahan)

Abstract

PV panels are vastly used for sustainable electricity generation, while they can also help the environment by improving buildings’ energy consumption. The best placement for PV panels installation in buildings with flat roofs is the roof. When placed on a building's roof, PV panels affect the building's energy loads by shading the roof surface. However, the shading effect of PV panels could be different depending on the roof's thermal properties and surface materials. The combined effect of shading caused by PV panels and cool materials could significantly change the roof surface temperature, and the building energy demand. In light of the lack of studies considering this combined effect, the present study aims to evaluate the energy-saving effects of different roof materials covered with solar PV panels for a typical residential building in four cities with different climate conditions in Iran. Applying a simulation tool, Ladybug Tools have been utilized for determining the building energy loads and PV panels' power generation. The obtained results indicate that PV panels significantly affect the cooling load of the building, especially during peak times. The hottest city, Bandar-Abbas, benefits the most, with a maximum saved energy ratio (SER) of 3.4%, while the coldest city, Ardabil, has the least SER, 0.5%. Additionally, in cold and moderate climates, the highest SER occurs for the lowest R-value and solar absorption roof, while for hot climates, the highest SER occurs for the roofs with the highest R-value and the lowest solar absorption. Overall, the shading effect of PV panels becomes more significant when solar absorption is high, and the roof R-value is low. Despite the decrease in cooling energy load, PV panels might increase the heating load. Depending on the climate, this contradictory effect of the roof's thermal properties and PV panels shading should be considered in the design process of buildings.

Suggested Citation

  • Roza Vakilinezhad & Navid Ziaee, 2024. "Assessing the combined effect of PV panels’ shading and cool materials on building energy loads in different climates," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 16201-16221, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03293-y
    DOI: 10.1007/s10668-023-03293-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03293-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03293-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03293-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.