IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i5d10.1007_s10668-020-00924-6.html
   My bibliography  Save this article

Modeling of global temperature control

Author

Listed:
  • Md. Faruque Hossain

    (Kennesaw State University)

Abstract

A natural mechanism is proposed for heating and cooling the surface of the Earth so that all living beings can live in a consistent comfortable temperature condition throughout the seasons. To accomplish this, photon particles are remodeled by implementing the Bose–Einstein (B–E) dormant photonic dynamics of the Earth surface plane. Simply, the proposed decoded B–E photons are induced by the photonic band-gap of the Earth’s surface to convert solar photons into cooling-state photons, here named Hossain cooling photons (HcP−s), which will eventually cool the Earth’s surface. Interestingly, an HcP− can be converted into a thermostate photon, named the Hossain thermal photon (HtP−), by implementing the Higgs boson (H → γγ−) electromagnetic quantum fields utilized by the Earth’s electromagnetic force. The H → γγ− quantum field of the Earth surface plane has an extremely small weak force, which will force the electrically charged HcP− quantum to convert into an HtP− to naturally heat the Earth’s surface. The formation of HcP− particles from the photon particles and then the conversion of HcP− to HtP− are proven by a set of mathematical tests in this research, which reveals the feasibility that the deformed photons (HcP− and HtP−) can actively interact with the Earth’s surface to naturally cool and heat the Earth.

Suggested Citation

  • Md. Faruque Hossain, 2021. "Modeling of global temperature control," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7432-7453, May.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00924-6
    DOI: 10.1007/s10668-020-00924-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00924-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00924-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    2. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    3. A. Javadi & I. Söllner & M. Arcari & S. Lindskov Hansen & L. Midolo & S. Mahmoodian & G Kiršanskė & T. Pregnolato & E. H. Lee & J. D. Song & S. Stobbe & P. Lodahl, 2015. "Single-photon non-linear optics with a quantum dot in a waveguide," Nature Communications, Nature, vol. 6(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, W. & Paul, M.C. & Baig, H. & Siviter, J. & Montecucco, A. & Mallick, T.K. & Knox, A.R., 2019. "A three-point-based electrical model and its application in a photovoltaic thermal hybrid roof-top system with crossed compound parabolic concentrator," Renewable Energy, Elsevier, vol. 130(C), pages 400-415.
    2. Tuyen Nguyen-Duc & Huy Nguyen-Duc & Thinh Le-Viet & Hirotaka Takano, 2020. "Single-Diode Models of PV Modules: A Comparison of Conventional Approaches and Proposal of a Novel Model," Energies, MDPI, vol. 13(6), pages 1-22, March.
    3. Md. Faruque Hossain, 2021. "Sustainable building technology: thermal control of solar energy to cool and heat the building naturally," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13304-13323, September.
    4. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    5. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    6. Tiwari, Arvind & Dubey, Swapnil & Sandhu, G.S. & Sodha, M.S. & Anwar, S.I., 2009. "Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes," Applied Energy, Elsevier, vol. 86(12), pages 2592-2597, December.
    7. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    8. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    9. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    10. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    11. Zhao, Zhen-Yu & Yang, Hui-Jia & Zuo, Jian, 2017. "Evolution of international trade for photovoltaic cells: A spatial structure study," Energy, Elsevier, vol. 124(C), pages 435-446.
    12. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    13. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    14. Andreea Sabadus & Marius Paulescu, 2021. "On the Nature of the One-Diode Solar Cell Model Parameters," Energies, MDPI, vol. 14(13), pages 1-10, July.
    15. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    16. Tian, Xinyi & Wang, Jun & Wang, Chuyao & Ji, Jie, 2023. "Comparison analysis of the glazed and unglazed curved water-based PV/T roofs in the non-heating season," Renewable Energy, Elsevier, vol. 205(C), pages 899-917.
    17. Wang, Shinong & Luo, Huan & Ge, Yuan & Liu, Shilin, 2021. "A new approach for modeling photovoltaic modules based on difference equation," Renewable Energy, Elsevier, vol. 168(C), pages 85-96.
    18. Toledo, F.J. & Blanes, José M. & Garrigós, Ausiàs & Martínez, José A., 2012. "Analytical resolution of the electrical four-parameters model of a photovoltaic module using small perturbation around the operating point," Renewable Energy, Elsevier, vol. 43(C), pages 83-89.
    19. Ramgolam, Yatindra Kumar & Soyjaudah, Krishnaraj Madhavjee Sunjiv, 2017. "Holistic performance appraisal of a photovoltaic system," Renewable Energy, Elsevier, vol. 109(C), pages 440-448.
    20. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00924-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.