IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00765-3.html
   My bibliography  Save this article

How do cities promote urban sustainability and smartness? An evaluation of the city strategies of six largest Finnish cities

Author

Listed:
  • Hannele Ahvenniemi

    (Aalto University)

  • Aapo Huovila

    (VTT Technical Research Centre of Finland)

Abstract

Cities have an increasingly important role in fighting against climate change, and to tackle this challenge, ambitious sustainability goals have been declared by a number of city councils. This has motivated the emergence of various sustainability-related city concepts, such as ‘sustainable city’, ‘eco city’, ‘carbon-neutral city’, however, without clarity on definition and relations between various concepts. On the other hand, digital advances and participatory trends have led to the popularity of the concept of smart city that is seen as a major driver for sustainable transformation. Digital solutions can improve efficiency in cities’ service provision as they need to serve increasing population with limited resources due to quick urbanisation. This study provides a new angle to the debate on different city concepts by examining how smartness and sustainability are presented in the city strategies of six largest Finnish cities. We used content analysis to explore the extent to which smartness and sustainability aspects are addressed in the city strategies and how smartness and sustainability goals overlap with each other. The results suggest that the majority of goals presented in the city strategies are related to social and economic sustainability, whereas environmental sustainability is less addressed. Less than one-third of the goals are related to a smartness aspect. An important observation is that most smartness aspects overlap with either social or economic sustainability, whereas overlapping with environmental sustainability is more rare. These findings provide information for the on-going academic discussion regarding the concepts of smart and sustainable cities and recommends adopting the concept of smart sustainable cities, in order to comprehensively cover the needs of contemporary cities.

Suggested Citation

  • Hannele Ahvenniemi & Aapo Huovila, 2021. "How do cities promote urban sustainability and smartness? An evaluation of the city strategies of six largest Finnish cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4174-4200, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00765-3
    DOI: 10.1007/s10668-020-00765-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00765-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00765-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    2. Yigitcanlar, Tan & Lee, Sang Ho, 2014. "Korean ubiquitous-eco-city: A smart-sustainable urban form or a branding hoax?," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 100-114.
    3. De Santis, Roberta & Fasano, Alessandra & Mignolli, Nadia & Villa, Anna, 2014. "Smart city: fact and fiction," MPRA Paper 54536, University Library of Munich, Germany.
    4. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    5. Jenni Viitanen & Richard Kingston, 2014. "Smart Cities and Green Growth: Outsourcing Democratic and Environmental Resilience to the Global Technology Sector," Environment and Planning A, , vol. 46(4), pages 803-819, April.
    6. Yigitcanlar, Tan & Kamruzzaman, Md., 2018. "Does smart city policy lead to sustainability of cities?," Land Use Policy, Elsevier, vol. 73(C), pages 49-58.
    7. Ton Dassen & Eva Kunseler & Lieke Michiels Kessenich, 2013. "The Sustainable City: An Analytical–Deliberative Approach to Assess Policy in the Context of Sustainable Urban Development," Sustainable Development, John Wiley & Sons, Ltd., vol. 21(3), pages 193-205, May.
    8. Lee, Jung Hoon & Hancock, Marguerite Gong & Hu, Mei-Chih, 2014. "Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 80-99.
    9. Amy Glasmeier & Susan Christopherson, 2015. "Thinking about smart cities," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 8(1), pages 3-12.
    10. Bob Giddings & Bill Hopwood & Geoff O'Brien, 2002. "Environment, economy and society: fitting them together into sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 10(4), pages 187-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    2. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    3. Daria Bylieva & Victoria Lobatyuk & Irina Shestakova, 2022. "Shared Micromobility: Between Physical and Digital Reality," Sustainability, MDPI, vol. 14(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kummitha, Rama Krishna Reddy, 2018. "Entrepreneurial urbanism and technological panacea: Why Smart City planning needs to go beyond corporate visioning?," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 330-339.
    2. Trencher, Gregory, 2019. "Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 117-128.
    3. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Strategic principles for smart city development: A multiple case study analysis of European best practices," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 70-97.
    4. Haarstad, Håvard & Wathne, Marikken W., 2019. "Are smart city projects catalyzing urban energy sustainability?," Energy Policy, Elsevier, vol. 129(C), pages 918-925.
    5. Yigitcanlar, Tan & Han, Hoon & Kamruzzaman, Md. & Ioppolo, Giuseppe & Sabatini-Marques, Jamile, 2019. "The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build?," Land Use Policy, Elsevier, vol. 88(C).
    6. Adrian Buttazzoni & Marta Veenhof & Leia Minaker, 2020. "Smart City and High-Tech Urban Interventions Targeting Human Health: An Equity-Focused Systematic Review," IJERPH, MDPI, vol. 17(7), pages 1-23, March.
    7. Secinaro, Silvana & Brescia, Valerio & Lanzalonga, Federico & Santoro, Gabriele, 2022. "Smart city reporting: A bibliometric and structured literature review analysis to identify technological opportunities and challenges for sustainable development," Journal of Business Research, Elsevier, vol. 149(C), pages 296-313.
    8. Kummitha, Rama Krishna Reddy & Crutzen, Nathalie, 2019. "Smart cities and the citizen-driven internet of things: A qualitative inquiry into an emerging smart city," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 44-53.
    9. Insaf Khelladi & Sylvaine Castellano & David Kalisz, 2020. "The smartization of metropolitan cities: the case of Paris," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1301-1325, December.
    10. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    11. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    12. Karimikia, Hadi & Bradshaw, Robert & Singh, Harminder & Ojo, Adegboyega & Donnellan, Brian & Guerin, Michael, 2022. "An emergent taxonomy of boundary spanning in the smart city context – The case of smart Dublin," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    13. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    14. Mona Treude, 2021. "Sustainable Smart City—Opening a Black Box," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    15. Małgorzata Baran & Monika Kłos & Monika Chodorek & Karolina Marchlewska-Patyk, 2022. "The Resilient Smart City Model–Proposal for Polish Cities," Energies, MDPI, vol. 15(5), pages 1-23, March.
    16. Ward Ooms & Marjolein C. J. Caniëls & Nadine Roijakkers & Dieudonnee Cobben, 2020. "Ecosystems for smart cities: tracing the evolution of governance structures in a dutch smart city initiative," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1225-1258, December.
    17. Miguel Manjon & Nathalie Crutzen, 2022. "Air quality in smart sustainable cities: target and/or trigger?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 359-386, April.
    18. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    19. Wu, Wenqing & Zhu, Dongyang & Liu, Wenyi & Wu, Chia-Huei, 2022. "Empirical research on smart city construction and public health under information and communications technology," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    20. Paula Bajdor & Marta Starostka-Patyk, 2021. "Smart City: A Bibliometric Analysis of Conceptual Dimensions and Areas," Energies, MDPI, vol. 14(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00765-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.