IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i7d10.1007_s10668-019-00519-w.html
   My bibliography  Save this article

Factors affecting properties of MSWI bottom ash employing cement and fiber for geotechnical applications

Author

Listed:
  • Davinder Singh

    (Dr. B.R. Ambedkar National Institute of Technology)

  • Arvind Kumar

    (Dr. B.R. Ambedkar National Institute of Technology)

Abstract

The present study is based on municipal solid waste incineration (MSWI) bottom ash stabilization when amended with cement and fiber. To simulate the effect of inclusion of cement and fibers on the behavior of MSWI bottom ash, numerous experiments were performed. The CBR test was considered as a basic parameter during the study. For CBR, a comparison was made among different test specimens under soaked and unsoaked conditions, with and without cement and fibers. The maximum dry unit weight of the bottom ash reduces, and moisture content rises due to the inclusion of cement and fiber. The results revealed that the relatively better combination was found to be highest gain of CBR value in case of 8% cement and 1% fiber. The study results also demonstrated that addition of fiber used to stabilize MSWI bottom ash reduces the stiffness as well as changes the behavior from brittle to ductile. Due to the free availability, such material can be used in compacted fills, embankments and road construction in very liberal manner. A multiple linear regression analysis of test results was carried out in order to develop a mathematical relationship to understand the intensity of different factors, i.e., MSWI bottom ash, cement content, fiber content, fiber length and curing period. The simulated model agreed reasonably with the experimental results.

Suggested Citation

  • Davinder Singh & Arvind Kumar, 2020. "Factors affecting properties of MSWI bottom ash employing cement and fiber for geotechnical applications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6891-6905, October.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:7:d:10.1007_s10668-019-00519-w
    DOI: 10.1007/s10668-019-00519-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00519-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00519-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongliu Li & Nianze Wu & Yuying Song & Junchen Xiang, 2023. "Investigating the Potential of Biobinder for Bottom Ash Solidification/Stabilization: Leaching Behaviour and pH Dependence," Sustainability, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Czop & Beata Łaźniewska-Piekarczyk, 2019. "Evaluation of the Leachability of Contaminations of Fly Ash and Bottom Ash from the Combustion of Solid Municipal Waste before and after Stabilization Process," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    2. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    3. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    4. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    5. Rawashdeh, Rami Al & Xavier-Oliveira, Emanuel & Maxwell, Philip, 2016. "The potash market and its future prospects," Resources Policy, Elsevier, vol. 47(C), pages 154-163.
    6. Magdalena Bogacka & Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Krzysztof Pikoń, 2020. "Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods," Energies, MDPI, vol. 13(23), pages 1-17, November.
    7. S. Joseph Antony & George Okeke & D. Deniz G. Tokgoz & N. Gozde Ozerkan, 2021. "Whole-Field Stress Sensing and Multiscale Mechanics for Developing Cement-Based Composites Containing Recycled Municipal Granular Wastes," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    8. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    9. Peng Xu & Qingliang Zhao & Wei Qiu & Yan Xue & Na Li, 2019. "Microstructure and Strength of Alkali-Activated Bricks Containing Municipal Solid Waste Incineration (MSWI) Fly Ash Developed as Construction Materials," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    10. Dezhi Zou & Xiaona Wang & Chuanfu Wu & Teng Li & Menglu Wang & Shu Liu & Qunhui Wang & Takayuki Shimaoka, 2020. "Dechlorination of Municipal Solid Waste Incineration Fly Ash by Leaching with Fermentation Liquid of Food Waste," Sustainability, MDPI, vol. 12(11), pages 1-11, May.
    11. Po-Wen Chen & Zhen-Shu Liu & Min-Jie Wun & Tai-Chen Kuo, 2016. "Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration," IJERPH, MDPI, vol. 13(11), pages 1-10, November.
    12. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    13. Ramachandran, Srikkanth & Yao, Zhiyi & You, Siming & Massier, Tobias & Stimming, Ulrich & Wang, Chi-Hwa, 2017. "Life cycle assessment of a sewage sludge and woody biomass co-gasification system," Energy, Elsevier, vol. 137(C), pages 369-376.
    14. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Muyiwa Lawrence Adedara & Ridwan Taiwo & Hans-Rudolf Bork, 2023. "Municipal Solid Waste Collection and Coverage Rates in Sub-Saharan African Countries: A Comprehensive Systematic Review and Meta-Analysis," Waste, MDPI, vol. 1(2), pages 1-25, April.
    16. Hao Yu & Wei Deng Solvang, 2016. "An Improved Multi-Objective Programming with Augmented ε -Constraint Method for Hazardous Waste Location-Routing Problems," IJERPH, MDPI, vol. 13(6), pages 1-21, May.
    17. del Valle-Zermeño, Ricardo & Barreneche, Camila & Cabeza, Luisa F. & Formosa, Joan & Fernández, A. Inés & Chimenos, Josep M., 2016. "MSWI bottom ash for thermal energy storage: An innovative and sustainable approach for its reutilization," Renewable Energy, Elsevier, vol. 99(C), pages 431-436.
    18. Estefani Rondón Toro & Ana López Martínez & Amaya Lobo García de Cortázar, 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    19. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    20. Lasek, Janusz A. & Głód, Krzysztof & Słowik, Krzysztof, 2021. "The co-combustion of torrefied municipal solid waste and coal in bubbling fluidised bed combustor under atmospheric and elevated pressure," Renewable Energy, Elsevier, vol. 179(C), pages 828-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:7:d:10.1007_s10668-019-00519-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.