IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i5d10.1007_s10668-019-00409-1.html
   My bibliography  Save this article

An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India

Author

Listed:
  • Chaitanya B. Pande

    (MPKV)

  • Kanak N. Moharir

    (Sant Gadge Baba Amravati University)

  • Sudhir Kumar Singh

    (University of Allahabad)

  • Abhay M. Varade

    (Rashtrasant Tukadoji Maharaj Nagpur University)

Abstract

The present research work accentuates the hydrogeological evaluation for Devdari watershed of Maharashtra, Central India, using remote sensing, GIS, and multi influencing factor (MIF). The thematic layers of land use/land cover, groundwater depth, slope, drainage, flow direction, flow accumulation and geomorphology were prepared using IRS-LISS-III satellite data coupled with Shuttle Radar Topography Mission data on 23.50 and 30 m spatial resolution, respectively. The raster layers of these themes were estimated by employing ArcGIS software 10.3 and multi-influencing factor method and subsequently assigned with the relative weights as per their groundwater potential characteristics. For acknowledgement of the groundwater potential map, all the thematic layers and their respective weightage values were subjected to weighted overlay analysis (WOA) method. The evolved map demonstrates six groundwater potential zones in the study area, i.e., poor to nil (0.27 km2), very poor (0.95 km2), poor (17.67 km2), moderate (0.33 km2), good (9.51 km2), very good (14.665 km2) and excellent (1.84 km2). A field check survey was carried out to ascertain the validity of groundwater potential maps. The results of study area disclose that the area of watershed with poor, moderate and good-to-excellent groundwater potential zones is evaluated to allow precipitated water to infiltrate into subsurface and finally contribute to groundwater recharge in the watershed area.

Suggested Citation

  • Chaitanya B. Pande & Kanak N. Moharir & Sudhir Kumar Singh & Abhay M. Varade, 2020. "An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4867-4887, June.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:5:d:10.1007_s10668-019-00409-1
    DOI: 10.1007/s10668-019-00409-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00409-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00409-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sudhir Singh & Prashant Srivastava & Avinash Pandey & Sandeep Gautam, 2013. "Integrated Assessment of Groundwater Influenced by a Confluence River System: Concurrence with Remote Sensing and Geochemical Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4291-4313, September.
    2. Hatem El Rahman, 2001. "Evaluation of Groundwater Resources in Lower Cretaceous Aquifer System in Sinai," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(3), pages 187-202, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahenthiran Sathiyamoorthy & Uma Shankar Masilamani & Aaron Anil Chadee & Sreelakhmi Devi Golla & Mohammed Aldagheiri & Parveen Sihag & Upaka Rathnayake & Jyotendra Patidar & Shivansh Shukla & Aryan K, 2023. "Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques," Sustainability, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    2. Salah Elsayed & Mohamed Gad & Mohamed Farouk & Ali H. Saleh & Hend Hussein & Adel H. Elmetwalli & Osama Elsherbiny & Farahat S. Moghanm & Moustapha E. Moustapha & Mostafa A. Taher & Ebrahem M. Eid & M, 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    3. Ankita P. Dadhich & Rohit Goyal & Pran N. Dadhich, 2021. "Assessment and Prediction of Groundwater using Geospatial and ANN Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2879-2893, July.
    4. Xi Zhu & Yansha Wen & Xiang Li & Feng Yan & Shuhe Zhao, 2023. "Remote Sensing Inversion of Typical Water Quality Parameters of a Complex River Network: A Case Study of Qidong’s Rivers," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    5. Hafiz Umar Farid & Hafiz Usman Ayub & Zahid Mahmood Khan & Ijaz Ahmad & Muhammad Naveed Anjum & Rana Muhammad Asif Kanwar & Muhammad Mubeen & Pervaiz Sakinder, 2023. "Groundwater quality risk assessment using hydro-chemical and geospatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8343-8365, August.
    6. Shailendra Pratap & Prashant K. Srivastava & Ashish Routray & Tanvir Islam & Rajesh Kumar Mall, 2020. "Appraisal of hydro-meteorological factors during extreme precipitation event: case study of Kedarnath cloudburst, Uttarakhand, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 635-654, January.
    7. Chaitanya B. Pande & Kanak N. Moharir & Sudhir Kumar Singh & Bloodless Dzwairo, 2020. "Groundwater evaluation for drinking purposes using statistical index: study of Akola and Buldhana districts of Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7453-7471, December.
    8. Zubairul Islam & Muthukumarasamy Ranganathan & Murugesan Bagyaraj & Sudhir Kumar Singh & Sandeep Kumar Gautam, 2022. "Multi-decadal groundwater variability analysis using geostatistical method for groundwater sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3146-3164, March.
    9. Christine Rivard & Yves Michaud & René Lefebvre & Christine Deblonde & Alfonso Rivera, 2008. "Characterization of a Regional Aquifer System in the Maritimes Basin, Eastern Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1649-1675, November.
    10. Jinjie Miao & Guoliang Liu & Bibo Cao & Yonghong Hao & Jianmimg Chen & Tian−Chyi Yeh, 2014. "Identification of Strong Karst Groundwater Runoff Belt by Cross Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2903-2916, August.

    More about this item

    Keywords

    GIS; MIF; WOA; Remote sensing;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:5:d:10.1007_s10668-019-00409-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.