IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i2d10.1007_s10668-016-9903-7.html
   My bibliography  Save this article

Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM

Author

Listed:
  • Mohamed Rafik N. Qureshi

    (King Khalid University)

  • Ram Karan Singh

    (King Khalid University)

  • Mohd. Abul Hasan

    (King Khalid University)

Abstract

The crop pattern has a significant impact on the feasibility of sustainable agricultural practices. Selected crop pattern influences environmental and economic condition and affects sustainability profoundly in agricultural practices. Hence, a careful intervention is required in the selection of an optimal crop pattern for sustainable agricultural practices. Selection of a particular set of crop pattern depends on many criteria that may vary from place to place thus pose challenges in deciding an optimum crop pattern. The present research focuses on the crop selection pattern in Indian environment that considers comprehensive criteria related to sustainable farming practices. Based on the in-depth review of the literature and experts opinion, comprehensive criteria related to sustainable farming practices for Ravi season crop are identified. Total twelve criteria covering socioeconomic conditions, soil and water conditions, environmental and climatic conditions are earmarked and taken into account for eight most commonly grown crops in Ravi season and later on modeled to determine the crop pattern for most needed sustainability. A fuzzy-based multi-criteria decision-making model has been developed considering the Indian farming system. The scarce resources availability to Indian farmers poses many challenges to practice farming with most needed sustainability. The present research will be useful in the area of Indian farming practices in particular and global farming practices in general. It will also help stakeholders in their cost effective decision making for better crop productivity leading to sustainable farming practices. Additionally, the state policy makers will be able to formulate effective state driven sustainable farming policy to enhance its stake in gross domestic product to become self-reliance.

Suggested Citation

  • Mohamed Rafik N. Qureshi & Ram Karan Singh & Mohd. Abul Hasan, 2018. "Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 641-659, April.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:2:d:10.1007_s10668-016-9903-7
    DOI: 10.1007/s10668-016-9903-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-016-9903-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-016-9903-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    3. K. Rezaei-Moghaddam & E. Karami, 2008. "A multiple criteria evaluation of sustainable agricultural development models using AHP," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(4), pages 407-426, August.
    4. Sydorovych, Olha & Wossink, Ada, 2008. "The meaning of agricultural sustainability: Evidence from a conjoint choice survey," Agricultural Systems, Elsevier, vol. 98(1), pages 10-20, July.
    5. Dillon, Emma J. & Hennessy, Thia C. & Hynes, Stephen, 2009. "Towards Measurement of Farm Sustainability - an Irish case study," 2009 Conference, August 16-22, 2009, Beijing, China 51786, International Association of Agricultural Economists.
    6. Rehman, T. & Romero, C., 1993. "The application of the MCDM paradigm to the management of agricultural systems: Some basic considerations," Agricultural Systems, Elsevier, vol. 41(3), pages 239-255.
    7. Gupta, A. P. & Harboe, R. & Tabucanon, M. T., 2000. "Fuzzy multiple-criteria decision making for crop area planning in Narmada river basin," Agricultural Systems, Elsevier, vol. 63(1), pages 1-18, January.
    8. Gomez-Limon, Jose A. & Arriaza, Manuel & Riesgo, Laura, 2003. "An MCDM analysis of agricultural risk aversion," European Journal of Operational Research, Elsevier, vol. 151(3), pages 569-585, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangning Cao & Yasir Ahmed Solangi, 2023. "Analyzing and Prioritizing the Barriers and Solutions of Sustainable Agriculture for Promoting Sustainable Development Goals in China," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    2. Hiwa Golpira & Rafael R. Sola-Guirado, 2022. "Data-Driven Simulator: Redesign of Chickpea Harvester Reels," Agriculture, MDPI, vol. 12(2), pages 1-11, February.
    3. N Deepa & Durai Raj Vincent P M & Senthil Kumar N & Kathiravan Srinivasan & Chuan-Yu Chang & Ali Kashif Bashir, 2019. "An Efficient Ensemble VTOPES Multi-Criteria Decision-Making Model for Sustainable Sugarcane Farms," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    4. Mohamed Rafik Noor Mohamed Qureshi & Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Shubhendu Singh & Naif Almakayeel, 2022. "Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    5. Moisés Barbosa Junior & Eliane Pinheiro & Carla Cristiane Sokulski & Diego Alexis Ramos Huarachi & Antonio Carlos de Francisco, 2022. "How to Identify Barriers to the Adoption of Sustainable Agriculture? A Study Based on a Multi-Criteria Model," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    6. Rosa Puertas & Luisa Marti & Jose-Maria Garcia-Alvarez-Coque, 2020. "Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    7. Veerasekar Palaniappan Sambasivam & Gowtham Thiyagarajan & Golam Kabir & Syed Mithun Ali & Syed Abdul Rehman Khan & Zhang Yu, 2020. "Selection of Winter Season Crop Pattern for Environmental-Friendly Agricultural Practices in India," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    8. Chandra Prakash Garg & Archana Sharma, 2020. "Sustainable outsourcing partner selection and evaluation using an integrated BWM–VIKOR framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1529-1557, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stelios Rozakis & Alexandra Sintori & Konstantinos Tsiboukas, 2009. "Utility-derived Supply Function of Sheep Milk: The Case of Etoloakarnania, Greece," Working Papers 2009-11, Agricultural University of Athens, Department Of Agricultural Economics.
    2. Carlos Durán Gabela & Bernardo Trejos & Pablo Lamiño Jaramillo & Amy Boren-Alpízar, 2022. "Sustainable Agriculture: Relationship between Knowledge and Attitude among University Students," Sustainability, MDPI, vol. 14(23), pages 1-11, November.
    3. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    4. Xuedong Liang & Qunxi Gong & Sipan Li & Siyuan Huang & Gengxuan Guo, 2023. "Regional agricultural sustainability assessment in China based on a developed model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8729-8752, August.
    5. Ahtiainen, Heini & Pouta, Eija & Liski, Eero & Assmuth, Aino & Myyrä, Sami, 2014. "The importance of agricultural objectives – summary of studies," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182792, European Association of Agricultural Economists.
    6. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    7. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    8. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    9. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    10. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    11. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    12. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    13. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    14. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    15. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    16. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    17. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    18. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    19. Hsiao, Tzy-yih, 2006. "Establish standards of standard costing with the application of convergent gray zone test," European Journal of Operational Research, Elsevier, vol. 168(2), pages 593-611, January.
    20. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:2:d:10.1007_s10668-016-9903-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.