IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v17y2015i1p57-81.html
   My bibliography  Save this article

Identification of elite native plants species for phytoaccumulation and remediation of major contaminants in uranium tailing ponds and its affected area

Author

Listed:
  • K. Laxman Singh
  • G. Sudhakar
  • S. Swaminathan
  • C. Muralidhar Rao

Abstract

Uranium mill tailings are the crushed rock residues of the uranium extraction process from ores. The tailings effluent and tailings solids from the mill are discharged as slurry to a waste retention pond, called tailing pond. Natural radionuclides’ and trace metals are present in mine tailing/soil in varying concentrations, and some of these are found in elevated concentrations in uranium waste tailings. Uranium mine tailing ponds at Jaduguda and Turamdih receive waste from ores mined at the six mine stations at Jharkhand state, India. A study was undertaken to evaluate the potential of native plant species for the phytoremediation of these site. Three sampling stations were selected at Jaduguda (TP1, TP2, TP3) and Turamdih and at the downstream of effluent treatment plant. pH, electrical conductivity, metals (12-Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Pb) and radionuclides’ (3-Co, Sr and U) were analyzed using inductively coupled plasma mass spectrophotometry. From the analysis, four elements—Al, Mn, Fe and U—were found to be much higher in concentration in water with range (mg/kg) of 0.02–2.38, 0.30–31.67, 0.00–0.75 and 0.03–5.50, respectively, and 10 elements—of U, Mn, Al, V, Fe, Ni, Cu, Zn, Co and Se—were found to be higher in concentrations in soils with range (mg/kg) of 22–99, 1,072–8,065, 14,053–21,213, 66–139, 15,163–44,640, 149–240, 135–350, 89–191, 34–140 and 12–122, respectively. Among them, U and Mn were identified as predominant contaminants. Out of all the native plants, 21 species were screened for phytoaccumulation and transfer factor study. P. digitalis (for Al, V, Ni and Co), E. ferox (for Mn and Cu), A. indica (for Fe), B. vitisidae (for Zn), P. hydropiper (for Se) and S. spantanium (for U) were identified for hyper-accumulation, and A. indica (for Al, Co, Se and U), C. bunplandianus (for Mn, Fe, Ni and Cu), E. ferox (for V) and C. procera (for Zn) were listed for non-accumulation of respective contaminant. Besides this, taking consideration of the parameters such as shallow-rooted plant species, easy to adapt, growth, harvest and biomass production and simultaneous accumulation of multiple contaminants, following plants were found to be candidate species for phytoremediation of tailing ponds of uranium mines: For hyper-accumulation: P. vittata (can accumulate Al, V, Ni, Co, Se and U simultaneously) followed by P. digitalis, C. compressus and S. spantanium. For non-accumulation: C. bunplandianus (can non-accumulate Al, Mn, Fe, Ni, Co, Cu, Zn, Se and U simultaneously) followed by B. moneri, C. procera and A. indica. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • K. Laxman Singh & G. Sudhakar & S. Swaminathan & C. Muralidhar Rao, 2015. "Identification of elite native plants species for phytoaccumulation and remediation of major contaminants in uranium tailing ponds and its affected area," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(1), pages 57-81, February.
  • Handle: RePEc:spr:endesu:v:17:y:2015:i:1:p:57-81
    DOI: 10.1007/s10668-014-9536-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10668-014-9536-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10668-014-9536-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li He & Feng Shao & Lixia Ren, 2021. "Sustainability appraisal of desired contaminated groundwater remediation strategies: an information-entropy-based stochastic multi-criteria preference model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1759-1779, February.
    2. Yu Mao & Jinlong Yong & Qian Liu & Baoshan Wu & Henglei Chen & Youhua Hu & Guangwen Feng, 2022. "Heavy Metals/Metalloids in Soil of a Uranium Tailings Pond in Northwest China: Distribution and Relationship with Soil Physicochemical Properties and Radionuclides," Sustainability, MDPI, vol. 14(9), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:17:y:2015:i:1:p:57-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.