IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v60y2021i3d10.1007_s00181-019-01792-4.html
   My bibliography  Save this article

Disaggregate productivity growth sources of regional industries in China

Author

Listed:
  • Lan-Bing Li

    (Nankai University
    Collaborative Innovation Center for China Economy)

  • Cong-Cong Zhang

    (Nankai University)

  • Jin-Li Hu

    (National Chiao Tung University)

  • Ching-Ren Chiu

    (University of Taipei)

Abstract

This paper extends a global slack-based productivity indicator and constructs a unified framework that consists of global and factor levels of total factor productivity (TFP) to evaluate the performance of regional industries, thus enabling global productivity improvement based on factor-level sources. Evaluating regional industrial performance in China during 1995–2014, the findings reveal that rapid growth of industry in China is not only driven by a huge amount of input, but also by TFP improvement, with industrial productivity driven mainly by technology progress and presenting a gradually increasing trend. Regional productivity performances are imbalanced, in which the east ranks first due to its dual advantages of input and output factors. For source identification, input and output jointly contribute to industrial productivity improvement, but output has a much higher contribution ratio to industrial productivity improvement than input, because it is mainly rooted in desirable output. Finally, on the input side, labor is the primary factor driving input productivity improvement followed by energy, while capital productivity shows very slight growth.

Suggested Citation

  • Lan-Bing Li & Cong-Cong Zhang & Jin-Li Hu & Ching-Ren Chiu, 2021. "Disaggregate productivity growth sources of regional industries in China," Empirical Economics, Springer, vol. 60(3), pages 1531-1557, March.
  • Handle: RePEc:spr:empeco:v:60:y:2021:i:3:d:10.1007_s00181-019-01792-4
    DOI: 10.1007/s00181-019-01792-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01792-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01792-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    3. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    4. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    5. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    6. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    7. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    8. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    9. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    10. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    11. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    12. Murty, M.N. & Kumar, Surender, 2002. "Measuring the cost of environmentally sustainable industrial development in India: a distance function approach," Environment and Development Economics, Cambridge University Press, vol. 7(3), pages 467-486, July.
    13. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    14. Chang, Tzu-Pu & Hu, Jin-Li & Chou, Ray Yeutien & Sun, Lei, 2012. "The sources of bank productivity growth in China during 2002–2009: A disaggregation view," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1997-2006.
    15. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    16. Chambers, Robert G., 1996. "A New Look at Exact Input, Output, Productivity, and Technical Change Measurement," Working Papers 197840, University of Maryland, Department of Agricultural and Resource Economics.
    17. Jin-Li Hu & Tzu-Pu Chang, 2016. "Total-Factor Energy Efficiency and Its Extensions: Introduction, Computation and Application," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 45-69, Springer.
    18. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    19. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    20. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    21. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    22. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    23. Dong-hyun Oh & Jeong-dong Lee, 2010. "A metafrontier approach for measuring Malmquist productivity index," Empirical Economics, Springer, vol. 38(1), pages 47-64, February.
    24. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    25. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    26. Diewert, W E, 1980. "Capital and the Theory of Productivity Measurement," American Economic Review, American Economic Association, vol. 70(2), pages 260-267, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamal Ali Al-Khasawneh & Naceur Essaddam & Salah A. Nusair & Benito A. Sanchez, 2023. "Productivity-conditioned market reaction of US Bank acquisitions during regulation-deregulation eras," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(2), pages 368-385, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Yeimin & Heshmati, Almas, 2013. "Measurement of Environmentally Sensitive Productivity Growth in Korean Industries," IZA Discussion Papers 7235, Institute of Labor Economics (IZA).
    2. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    3. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.
    4. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    5. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    6. Jayanath Ananda & Dong-hyun Oh, 2023. "Assessing environmentally sensitive productivity growth: incorporating externalities and heterogeneity into water sector evaluations," Journal of Productivity Analysis, Springer, vol. 59(1), pages 45-60, February.
    7. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    8. Aparicio, Juan & Ortiz, Lidia & Santín, Daniel, 2021. "Comparing group performance over time through the Luenberger productivity indicator: An application to school ownership in European countries," European Journal of Operational Research, Elsevier, vol. 294(2), pages 651-672.
    9. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    10. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
    11. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    12. Portela, Maria C.A.S. & Thanassoulis, Emmanuel, 2010. "Malmquist-type indices in the presence of negative data: An application to bank branches," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1472-1483, July.
    13. Zhong, Shen & Li, Junwei & Chen, Xi & Wen, Hongmei, 2022. "A multi-hierarchy meta-frontier approach for measuring green total factor productivity: An application of pig breeding in China," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    14. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
    15. Lin, Boqiang & Sai, Rockson, 2022. "Has mining agglomeration affected energy productivity in Africa?," Energy, Elsevier, vol. 244(PA).
    16. Chiu, Ching-Ren & Liou, Je-Liang & Wu, Pei-Ing & Fang, Chen-Ling, 2012. "Decomposition of the environmental inefficiency of the meta-frontier with undesirable output," Energy Economics, Elsevier, vol. 34(5), pages 1392-1399.
    17. Shixiong Cheng & Jiahui Xie & De Xiao & Yun Zhang, 2019. "Measuring the Environmental Efficiency and Technology Gap of PM 2.5 in China’s Ten City Groups: An Empirical Analysis Using the EBM Meta-Frontier Model," IJERPH, MDPI, vol. 16(4), pages 1-22, February.
    18. Barnabé Walheer, 2022. "Global Malmquist and cost Malmquist indexes for group comparison," Journal of Productivity Analysis, Springer, vol. 58(1), pages 75-93, August.
    19. Pooja Bansal & Aparna Mehra & Sunil Kumar, 2022. "Dynamic Metafrontier Malmquist–Luenberger Productivity Index in Network DEA: An Application to Banking Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 297-324, January.
    20. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.

    More about this item

    Keywords

    Global slack-based productivity indicator (GSBPI); Factor-level productivity indicator; Regional industrial growth; Source identification;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:60:y:2021:i:3:d:10.1007_s00181-019-01792-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.