IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v53y2017i2d10.1007_s00181-016-1144-y.html
   My bibliography  Save this article

Time-varying persistence in US inflation

Author

Listed:
  • Massimiliano Caporin

    (University of Padova)

  • Rangan Gupta

    (University of Pretoria)

Abstract

The persistence property of inflation is an important issue not only for economists, but especially for central banks, given that the degree of inflation persistence determines the extent to which central banks can control inflation. Further, not only is it the level of inflation persistence that is important in economic analyses, but also the question of whether the persistence varies over time, for instance, across business cycle phases, is equally pertinent, since assuming constant persistence across states of the economy is sure to lead to misguided policy decisions. Against this backdrop, we extend the literature on long-memory models of inflation persistence for the US economy over the monthly period of 1920:1–2014:5, by developing an autoregressive fractionally integrated moving-average-generalized autoregressive conditional heteroskedastic model with a time-varying memory coefficient which varies across expansions and recessions. In sum, we find that inflation persistence does vary across recessions and expansions, with it being significantly higher in the former than in the latter. As an aside, we also show that persistence of inflation volatility is higher during expansions than in recessions. Understandably, our results have important policy implications.

Suggested Citation

  • Massimiliano Caporin & Rangan Gupta, 2017. "Time-varying persistence in US inflation," Empirical Economics, Springer, vol. 53(2), pages 423-439, September.
  • Handle: RePEc:spr:empeco:v:53:y:2017:i:2:d:10.1007_s00181-016-1144-y
    DOI: 10.1007/s00181-016-1144-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-016-1144-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-016-1144-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
    2. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    3. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    4. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Wolters Maik H. & Tillmann Peter, 2015. "The changing dynamics of US inflation persistence: a quantile regression approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 161-182, April.
    7. Brunner, Allan D & Hess, Gregory D, 1993. "Are Higher Levels of Inflation Less Predictable? A State-Dependent Conditional Heteroscedasticity Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 187-197, April.
    8. Uwe Hassler & Barbara Meller, 2014. "Detecting multiple breaks in long memory the case of U.S. inflation," Empirical Economics, Springer, vol. 46(2), pages 653-680, March.
    9. Mohamed Boutahar & Gilles Dufrénot & Anne Péguin-Feissolle, 2008. "A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter d t," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 225-241, April.
    10. Tsay, Wen-Jen & Härdle, Wolfgang Karl, 2007. "A generalized ARFIMA process with Markov-switching fractional differencing parameter," SFB 649 Discussion Papers 2007-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Martins, Luis F. & Rodrigues, Paulo M.M., 2014. "Testing for persistence change in fractionally integrated models: An application to world inflation rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 502-522.
    12. Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2016. "Analyzing South Africa’s inflation persistence using an ARFIMA model with Markov-switching fractional differencing parameter," Journal of Developing Areas, Tennessee State University, College of Business, vol. 50(1), pages 47-57, January-M.
    13. Laurence Ball & Stephen G. Cecchetti, 1990. "Inflation and Uncertainty at Long and Short Horizons," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 21(1), pages 215-254.
    14. Richard T. Baillie & Young Wook Han & Tae-Go Kwon, 2002. "Further Long Memory Properties of Inflationary Shocks," Southern Economic Journal, John Wiley & Sons, vol. 68(3), pages 496-510, January.
    15. Barsky, Robert B., 1987. "The Fisher hypothesis and the forecastability and persistence of inflation," Journal of Monetary Economics, Elsevier, vol. 19(1), pages 3-24, January.
    16. Ahdi Ajmi & Adnen Ben Nasr & Mohamed Boutahar, 2008. "Seasonal Nonlinear Long Memory Model for the US Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 243-254, April.
    17. Sebastiano Manzan & Dawit Zerom, 2015. "Asymmetric Quantile Persistence and Predictability: the Case of US Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 297-318, April.
    18. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    19. Lee, Jin, 2005. "Estimating memory parameter in the US inflation rate," Economics Letters, Elsevier, vol. 87(2), pages 207-210, May.
    20. Cukierman, Alex & Meltzer, Allan H, 1986. "A Theory of Ambiguity, Credibility, and Inflation under Discretion and Asymmetric Information," Econometrica, Econometric Society, vol. 54(5), pages 1099-1128, September.
    21. Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
    22. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    23. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    24. Mohamed Boutahar & Gilles Dufrénot & Anne Peguin-Feissolle, 2008. "A SIMPLE FRACTIONALLY INTEGRATED MODEL WITH A TIME-VARYING LONG MEMORY PARAMETER Dt - [Document de travail n°2008 - 10]," Working Papers halshs-00275254, HAL.
    25. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    26. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    27. Massimiliano Caporin & Juliusz Preś, 2013. "Forecasting Temperature Indices Density with Time‐Varying Long‐Memory Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 339-352, July.
    28. Massimiliano Caporin & Juliusz Pres, 2008. "Forecasting temperature indices with timevarying long-memory models," "Marco Fanno" Working Papers 0088, Dipartimento di Scienze Economiche "Marco Fanno".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wingert, Simon & Mboya, Mwasi Paza & Sibbertsen, Philipp, 2020. "Distinguishing between breaks in the mean and breaks in persistence under long memory," Economics Letters, Elsevier, vol. 193(C).
    2. Zhanshou Chen & Yanting Xiao & Fuxiao Li, 2021. "Monitoring memory parameter change-points in long-memory time series," Empirical Economics, Springer, vol. 60(5), pages 2365-2389, May.
    3. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    4. Hamidreza Ghorbani Dastgerdi, 2020. "Inflation Theories and Inflation Persistence in Iran," Zagreb International Review of Economics and Business, Faculty of Economics and Business, University of Zagreb, vol. 23(2), pages 1-20, November.
    5. Canepa, Alessandra, 2024. "Inflation dynamics and persistence: The importance of the uncertainty channel," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    6. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    2. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    3. Richard T. Baille & Claudio Morana, 2009. "Investigating Inflation Dynamics and Structural Change with an Adaptive ARFIMA Approach," ICER Working Papers - Applied Mathematics Series 06-2009, ICER - International Centre for Economic Research.
    4. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2013. "Asymmetric and Time-Varying Causality between Inflation and Inflation Uncertainty in G-7 Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 60(1), pages 1-42, February.
    5. Belkhouja, Mustapha & Mootamri, Imene, 2016. "Long memory and structural change in the G7 inflation dynamics," Economic Modelling, Elsevier, vol. 54(C), pages 450-462.
    6. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    7. Richard T. Baillie & Young Wook Han & Tae‐Go Kwon, 2002. "Further Long Memory Properties of Inflationary Shocks," Southern Economic Journal, John Wiley & Sons, vol. 68(3), pages 496-510, January.
    8. Baillie, Richard T. & Morana, Claudio, 2012. "Adaptive ARFIMA models with applications to inflation," Economic Modelling, Elsevier, vol. 29(6), pages 2451-2459.
    9. Luis A. Gil-Alana & Andrea Mervar & James E. Payne, 2017. "The stationarity of inflation in Croatia: anti-inflation stabilization program and the change in persistence," Economic Change and Restructuring, Springer, vol. 50(1), pages 45-58, February.
    10. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    11. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    12. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.
    13. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    14. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    15. Ben Nasr, Adnen & Trabelsi, Abdelwahed, 2005. "Seasonal and Periodic Long Memory Models in the In�ation Rates," MPRA Paper 22690, University Library of Munich, Germany, revised 03 Feb 2006.
    16. Giorgio Canarella & Stephen M Miller, 2017. "Inflation Persistence Before and After Inflation Targeting: A Fractional Integration Approach," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 78-103, January.
    17. Luis A. Gil-Alana, 2005. "Testing and forecasting the degree of integration in the US inflation rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(3), pages 173-187.
    18. Antonakakis, Nikolaos & Cunado, Juncal & Gil-Alana, Luis A. & Gupta, Rangan, 2016. "Is inflation persistence different in reality?," Economics Letters, Elsevier, vol. 148(C), pages 55-58.
    19. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    20. Caporale, Guglielmo Maria & Gil-Alaña, Luis, 2019. "Testing the Fisher hypothesis in the G-7 countries using I(d) techniques," International Economics, Elsevier, vol. 159(C), pages 140-150.

    More about this item

    Keywords

    Persistence; US inflation rate; Time-varying long memory;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:53:y:2017:i:2:d:10.1007_s00181-016-1144-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.