IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v21y1996i2p255-79.html
   My bibliography  Save this article

Probability Forecast of Downturn in U.S. Economy Using Classical Statistical Decision Theory

Author

Listed:
  • Mostaghimi, Mehdi
  • Rezayat, Fahimeh

Abstract

This paper presents a methodology for producing a probability forecast of a turning point in U.S. economy using Composite Leading Indicators. This methodology is based on classical statistical decision theory and uses information-theoretic measurement to produce a probability. The methodology is flexible using as many historical data points as desired. This methodology is applied to producing probability forecasts of a downturn in U.S. economy in the 1970-1990 period. Four probability forecasts are produced using different amounts of information. The performance of these forecasts is evaluated using the actual downturn points and the scores measuring accuracy, calibration, and resolution. An indirect comparison of these forecasts with Diebold and Rudebusch's sequential probability recursion is also presented. It is shown that the performances of our best two models are statistically different from the performance of the three-consecutive-month decline model and are the same as the one for the best probit model. The probit model, however, is more conservative in its predictions than our two models.

Suggested Citation

  • Mostaghimi, Mehdi & Rezayat, Fahimeh, 1996. "Probability Forecast of Downturn in U.S. Economy Using Classical Statistical Decision Theory," Empirical Economics, Springer, vol. 21(2), pages 255-279.
  • Handle: RePEc:spr:empeco:v:21:y:1996:i:2:p:255-79
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Mostaghimi, 2004. "Monetary policy, composite leading economic indicators and predicting the 2001 recession," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 463-477.
    2. Ash, J. C. K. & Smyth, D. J. & Heravi, S. M., 1998. "Are OECD forecasts rational and useful?: a directional analysis," International Journal of Forecasting, Elsevier, vol. 14(3), pages 381-391, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:21:y:1996:i:2:p:255-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.