IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v33y2023i1d10.1007_s12525-023-00668-x.html
   My bibliography  Save this article

Information provision measures for voice agent product recommendations— The effect of process explanations and process visualizations on fairness perceptions

Author

Listed:
  • Helena Weith

    (University of Bern)

  • Christian Matt

    (University of Bern)

Abstract

While voice agent product recommendations (VAPR) can be convenient for users, their underlying artificial intelligence (AI) components are subject to recommendation engine opacities and audio-based constraints, which limit users’ information level when conducting purchase decisions. As a result, users might feel as if they are being treated unfairly, which can lead to negative consequences for retailers. Drawing from the information processing and stimulus-organism-response theory, we investigate through two experimental between-subjects studies how process explanations and process visualizations—as additional information provision measures—affect users’ perceived fairness and behavioral responses to VAPRs. We find that process explanations have a positive effect on fairness perceptions, whereas process visualizations do not. Process explanations based on users’ profiles and their purchase behavior show the strongest effects in improving fairness perceptions. We contribute to the literature on fair and explainable AI by extending the rather algorithm-centered perspectives by considering audio-based VAPR constraints and directly linking them to users’ perceptions and responses. We inform practitioners how they can use information provision measures to avoid unjustified perceptions of unfairness and adverse behavioral responses.

Suggested Citation

  • Helena Weith & Christian Matt, 2023. "Information provision measures for voice agent product recommendations— The effect of process explanations and process visualizations on fairness perceptions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-20, December.
  • Handle: RePEc:spr:elmark:v:33:y:2023:i:1:d:10.1007_s12525-023-00668-x
    DOI: 10.1007/s12525-023-00668-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-023-00668-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-023-00668-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Voice agents; Product recommendations; Fairness perceptions; Process explanations; Process visualizations; Behavioral responses;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:33:y:2023:i:1:d:10.1007_s12525-023-00668-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.