IDEAS home Printed from https://ideas.repec.org/a/spr/eaiere/v14y2017i1d10.1007_s40844-016-0066-x.html
   My bibliography  Save this article

Energy transition in Germany: a case study on a policy-driven structural change of the energy system

Author

Listed:
  • Felix Christian Matthes

    (Oeko-Institut)

Abstract

The German energy transition (“Energiewende”), i.e., shifting the basis of the energy system from fossil and nuclear fuels to renewable energy constitutes a policy-driven structural change of the energy systems. The fundamental political decisions on nuclear phase-out and the deep decarbonisation of the energy system were based on specific risk considerations in German society, formed by political and learning processes over more than two decades, including the experiences made with the roll-out of renewable energies from 1990 to 2010 that created significant technology optimism in this field. The major challenges for the energy transition do not arise from technological issues or the system costs of a renewables-based system if the once-only investments in innovation are taken into account (that contributed significantly to the massive cost decrease of wind and solar energy at global level). Structural challenges arise first from the dominance of variable renewable energies, which changes generation patterns and shifts cost structures to high shares of capital and low or even zero marginal costs. This triggers the need for restructured power market design that enables price-based system coordination as well as the payback of investments in a low marginal cost environment and re-adjusts the cost allocation among the different consumer groups. Second, the increasing diversity in the power system brings in a broad range of new players and new economic appraisals (self-generation, etc.) that also requires—beyond new dimensions of coordination—structural changes in the regulatory framework. Third, the spatial patterns of the electricity system necessitate large-scale structural changes in the network infrastructures, which demand a sensitive reflection of public acceptance and network regulation approaches. A successful energy transition beyond its present stage requires stringent and holistic policy approaches that are based on four pillars: paving the way for clean energy, designing the exit game for the high-carbon assets, triggering the network infrastructures and making innovation work in time.

Suggested Citation

  • Felix Christian Matthes, 2017. "Energy transition in Germany: a case study on a policy-driven structural change of the energy system," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 141-169, June.
  • Handle: RePEc:spr:eaiere:v:14:y:2017:i:1:d:10.1007_s40844-016-0066-x
    DOI: 10.1007/s40844-016-0066-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40844-016-0066-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40844-016-0066-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    2. William Hongsong Wang & Vicente Moreno-Casas & Jesús Huerta de Soto, 2021. "A Free-Market Environmentalist Transition toward Renewable Energy: The Cases of Germany, Denmark, and the United Kingdom," Energies, MDPI, vol. 14(15), pages 1-27, July.
    3. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    4. Cheung, Grace & Davies, Peter J. & Bassen, Alexander, 2019. "In the transition of energy systems: What lessons can be learnt from the German achievement?," Energy Policy, Elsevier, vol. 132(C), pages 633-646.
    5. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 196.
    6. Sarah Hafner & Olivia James & Aled Jones, 2019. "A Scoping Review of Barriers to Investment in Climate Change Solutions," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    7. Karoline S. Rogge & Elisabeth Dütschke, 2017. "Exploring Perceptions of the Credibility of Policy Mixes: The Case of German Manufacturers of Renewable Power Generation Technologies," SPRU Working Paper Series 2017-23, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Edler, Jakob & Köhler, Jonathan Hugh & Wydra, Sven & Salas-Gironés, Edgar & Schiller, Katharina & Braun, Annette, 2021. "Dimensions of systems and transformations: Towards an integrated framework for system transformations," Working Papers "Sustainability and Innovation" S03/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    2. Thomaidis, Nikolaos S. & Biskas, Pandelis N., 2021. "Fundamental pricing laws and long memory effects in the day-ahead power market," Energy Economics, Elsevier, vol. 100(C).
    3. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    4. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    5. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    6. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    8. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    9. Kaltenegger, Oliver & Löschel, Andreas & Baikowski, Martin & Lingens, Jörg, 2017. "Energy costs in Germany and Europe: An assessment based on a (total real unit) energy cost accounting framework," Energy Policy, Elsevier, vol. 104(C), pages 419-430.
    10. Chiappinelli, Olga & May, Nils, 2022. "Too good to be true? Time-inconsistent renewable energy policies," Energy Economics, Elsevier, vol. 112(C).
    11. Samarth Kumar & David Schönheit & Matthew Schmidt & Dominik Möst, 2019. "Parsing the Effects of Wind and Solar Generation on the German Electricity Trade Surplus," Energies, MDPI, vol. 12(18), pages 1-17, September.
    12. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    13. Abrell, Jan & Kosch, Mirjam, 2022. "Cross-country spillovers of renewable energy promotion—The case of Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    14. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    15. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    17. Soini, Vesa, 2021. "Wind power intermittency and the balancing power market: Evidence from Denmark," Energy Economics, Elsevier, vol. 100(C).
    18. Shimomura, Mizue & Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Managi, Shunsuke, 2024. "Beyond the merit order effect: Impact of the rapid expansion of renewable energy on electricity market price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    20. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.

    More about this item

    Keywords

    Energy transition; Electricity policy; Decarbonisation; Renewable energy; Germany;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q38 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Government Policy (includes OPEC Policy)
    • N74 - Economic History - - Economic History: Transport, International and Domestic Trade, Energy, and Other Services - - - Europe: 1913-

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eaiere:v:14:y:2017:i:1:d:10.1007_s40844-016-0066-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.