IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v9y2019i3d10.1007_s13235-019-00298-z.html
   My bibliography  Save this article

Non-stationary Differential-Difference Games of Neutral Type

Author

Listed:
  • Ievgen Liubarshchuk

    (Yuriy Fedkovych Chernivtsi National University)

  • Yaroslav Bihun

    (Yuriy Fedkovych Chernivtsi National University)

  • Igor Cherevko

    (Yuriy Fedkovych Chernivtsi National University)

Abstract

We consider the pursuit problem for 2-person conflict-controlled process with single pursuer and single evader. The problem is given by the system of the linear functional-differential equations of neutral type. The players pursue their own goals and choose controls in the form of functions of a certain kind. The goal of the pursuer is to catch the evader in the shortest possible time. The goal of the evader is to avoid the meeting of the players’ trajectories on a whole semiinfinite interval of time or if it is impossible to maximally postpone the moment of meeting. For such a conflict-controlled process, we derive conditions on its parameters and initial state, which are sufficient for the trajectories of the players to meet at a certain moment of time for any counteractions of the evader.

Suggested Citation

  • Ievgen Liubarshchuk & Yaroslav Bihun & Igor Cherevko, 2019. "Non-stationary Differential-Difference Games of Neutral Type," Dynamic Games and Applications, Springer, vol. 9(3), pages 771-779, September.
  • Handle: RePEc:spr:dyngam:v:9:y:2019:i:3:d:10.1007_s13235-019-00298-z
    DOI: 10.1007/s13235-019-00298-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-019-00298-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-019-00298-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arkadii A. Chikrii, 2008. "Game Dynamic Problems for Systems with Fractional Derivatives," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Athanasios Migdalas & Leonidas Pitsoulis (ed.), Pareto Optimality, Game Theory And Equilibria, pages 349-386, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhail I. Gomoyunov, 2021. "Differential Games for Fractional-Order Systems: Hamilton–Jacobi–Bellman–Isaacs Equation and Optimal Feedback Strategies," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
    2. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:9:y:2019:i:3:d:10.1007_s13235-019-00298-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.