Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries
Author
Abstract
Suggested Citation
DOI: 10.1007/s40264-022-01196-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alec B. Chapman & Kelly S. Peterson & Patrick R. Alba & Scott L. DuVall & Olga V. Patterson, 2019. "Detecting Adverse Drug Events with Rapidly Trained Classification Models," Drug Safety, Springer, vol. 42(1), pages 147-156, January.
- Abhyuday Jagannatha & Feifan Liu & Weisong Liu & Hong Yu, 2019. "Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0)," Drug Safety, Springer, vol. 42(1), pages 99-111, January.
- Xi Yang & Jiang Bian & Yan Gong & William R. Hogan & Yonghui Wu, 2019. "MADEx: A System for Detecting Medications, Adverse Drug Events, and Their Relations from Clinical Notes," Drug Safety, Springer, vol. 42(1), pages 123-133, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feifan Liu & Abhyuday Jagannatha & Hong Yu, 2019. "Towards Drug Safety Surveillance and Pharmacovigilance: Current Progress in Detecting Medication and Adverse Drug Events from Electronic Health Records," Drug Safety, Springer, vol. 42(1), pages 95-97, January.
- Likeng Liang & Jifa Hu & Gang Sun & Na Hong & Ge Wu & Yuejun He & Yong Li & Tianyong Hao & Li Liu & Mengchun Gong, 2022. "Artificial Intelligence-Based Pharmacovigilance in the Setting of Limited Resources," Drug Safety, Springer, vol. 45(5), pages 511-519, May.
- Abhyuday Jagannatha & Feifan Liu & Weisong Liu & Hong Yu, 2019. "Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0)," Drug Safety, Springer, vol. 42(1), pages 99-111, January.
- Siun Kim & Taegwan Kang & Tae Kyu Chung & Yoona Choi & YeSol Hong & Kyomin Jung & Howard Lee, 2023. "Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques," Drug Safety, Springer, vol. 46(8), pages 781-795, August.
- Heba Edrees & Wenyu Song & Ania Syrowatka & Aurélien Simona & Mary G. Amato & David W. Bates, 2022. "Intelligent Telehealth in Pharmacovigilance: A Future Perspective," Drug Safety, Springer, vol. 45(5), pages 449-458, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:drugsa:v:45:y:2022:i:8:d:10.1007_s40264-022-01196-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/economics/journal/40264 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.