IDEAS home Printed from https://ideas.repec.org/a/spr/drugsa/v45y2022i5d10.1007_s40264-022-01157-4.html
   My bibliography  Save this article

“Artificial Intelligence” for Pharmacovigilance: Ready for Prime Time?

Author

Listed:
  • Robert Ball

    (US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Surveillance and Epidemiology)

  • Gerald Dal Pan

    (US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Surveillance and Epidemiology)

Abstract

There is great interest in the application of ‘artificial intelligence’ (AI) to pharmacovigilance (PV). Although US FDA is broadly exploring the use of AI for PV, we focus on the application of AI to the processing and evaluation of Individual Case Safety Reports (ICSRs) submitted to the FDA Adverse Event Reporting System (FAERS). We describe a general framework for considering the readiness of AI for PV, followed by some examples of the application of AI to ICSR processing and evaluation in industry and FDA. We conclude that AI can usefully be applied to some aspects of ICSR processing and evaluation, but the performance of current AI algorithms requires a ‘human-in-the-loop’ to ensure good quality. We identify outstanding scientific and policy issues to be addressed before the full potential of AI can be exploited for ICSR processing and evaluation, including approaches to quality assurance of ‘human-in-the-loop’ AI systems, large-scale, publicly available training datasets, a well-defined and computable ‘cognitive framework’, a formal sociotechnical framework for applying AI to PV, and development of best practices for applying AI to PV. Practical experience with stepwise implementation of AI for ICSR processing and evaluation will likely provide important lessons that will inform the necessary policy and regulatory framework to facilitate widespread adoption and provide a foundation for further development of AI approaches to other aspects of PV.

Suggested Citation

  • Robert Ball & Gerald Dal Pan, 2022. "“Artificial Intelligence” for Pharmacovigilance: Ready for Prime Time?," Drug Safety, Springer, vol. 45(5), pages 429-438, May.
  • Handle: RePEc:spr:drugsa:v:45:y:2022:i:5:d:10.1007_s40264-022-01157-4
    DOI: 10.1007/s40264-022-01157-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40264-022-01157-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40264-022-01157-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:drugsa:v:45:y:2022:i:5:d:10.1007_s40264-022-01157-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/economics/journal/40264 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.