IDEAS home Printed from https://ideas.repec.org/a/spr/drugsa/v43y2020i9d10.1007_s40264-020-00943-2.html
   My bibliography  Save this article

Combining Social Media and FDA Adverse Event Reporting System to Detect Adverse Drug Reactions

Author

Listed:
  • Ying Li

    (IBM Thomas J. Watson Research Center)

  • Antonio Jimeno Yepes

    (IBM Research Australia)

  • Cao Xiao

    (IQVIA)

Abstract

Introduction Adverse drug reactions (ADRs) are unintended reactions caused by a drug or combination of drugs taken by a patient. The current safety surveillance system relies on spontaneous reporting systems (SRSs) and more recently on observational health data; however, ADR detection may be delayed and lack geographic diversity. The broad scope of social media conversations, such as those on Twitter, can include health-related topics. Consequently, these data could be used to detect potentially novel ADRs with less latency. Although research regarding ADR detection using social media has made progress, findings are based on single information sources, and no study has yet integrated drug safety evidence from both an SRS and Twitter. Objective The aim of this study was to combine signals from an SRS and Twitter to facilitate the detection of safety signals and compare the performance of the combined system with signals generated by individual data sources. Methods We extracted potential drug–ADR posts from Twitter, used Monte Carlo expectation maximization to generate drug safety signals from both the US FDA Adverse Event Reporting System and posts from Twitter, and then integrated these signals using a Bayesian hierarchical model. The results from the integrated system and two individual sources were evaluated using a reference standard derived from drug labels. Area under the receiver operating characteristics curve (AUC) was computed to measure performance. Results We observed a significant improvement in the AUC of the combined system when comparing it with Twitter alone, and no improvement when comparing with the SRS alone. The AUCs ranged from 0.587 to 0.637 for the combined SRS and Twitter, from 0.525 to 0.534 for Twitter alone, and from 0.612 to 0.642 for the SRS alone. The results varied because different preprocessing procedures were applied to Twitter. Conclusion The accuracy of signal detection using social media can be improved by combining signals with those from SRSs. However, the combined system cannot achieve better AUC performance than data from FAERS alone, which may indicate that Twitter data are not ready to be integrated into a purely data-driven combination system.

Suggested Citation

  • Ying Li & Antonio Jimeno Yepes & Cao Xiao, 2020. "Combining Social Media and FDA Adverse Event Reporting System to Detect Adverse Drug Reactions," Drug Safety, Springer, vol. 43(9), pages 893-903, September.
  • Handle: RePEc:spr:drugsa:v:43:y:2020:i:9:d:10.1007_s40264-020-00943-2
    DOI: 10.1007/s40264-020-00943-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40264-020-00943-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40264-020-00943-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrie E. Pierce & Khaled Bouri & Carol Pamer & Scott Proestel & Harold W. Rodriguez & Hoa Le & Clark C. Freifeld & John S. Brownstein & Mark Walderhaug & I. Ralph Edwards & Nabarun Dasgupta, 2017. "Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts," Drug Safety, Springer, vol. 40(4), pages 317-331, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arijit Dey & Jitendra Nath Shrivastava & Chandan Kumar, 2024. "Classical-quantum hybrid transfer learning for adverse drug reaction detection from social media posts," Journal of Computational Social Science, Springer, vol. 7(2), pages 1433-1450, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucie M. Gattepaille & Sara Hedfors Vidlin & Tomas Bergvall & Carrie E. Pierce & Johan Ellenius, 2020. "Prospective Evaluation of Adverse Event Recognition Systems in Twitter: Results from the Web-RADR Project," Drug Safety, Springer, vol. 43(8), pages 797-808, August.
    2. Camille Goyer & Genaro Castillon & Yola Moride, 2022. "Implementation of Interventions and Policies on Opioids and Awareness of Opioid-Related Harms in Canada: A Multistage Mixed Methods Descriptive Study," IJERPH, MDPI, vol. 19(9), pages 1-12, April.
    3. Yiqing Zhao & Yue Yu & Hanyin Wang & Yikuan Li & Yu Deng & Guoqian Jiang & Yuan Luo, 2022. "Machine Learning in Causal Inference: Application in Pharmacovigilance," Drug Safety, Springer, vol. 45(5), pages 459-476, May.
    4. Juergen Dietrich & Lucie M. Gattepaille & Britta Anne Grum & Letitia Jiri & Magnus Lerch & Daniele Sartori & Antoni Wisniewski, 2020. "Adverse Events in Twitter-Development of a Benchmark Reference Dataset: Results from IMI WEB-RADR," Drug Safety, Springer, vol. 43(5), pages 467-478, May.
    5. Karen Smith & Su Golder & Abeed Sarker & Yoon Loke & Karen O’Connor & Graciela Gonzalez-Hernandez, 2018. "Methods to Compare Adverse Events in Twitter to FAERS, Drug Information Databases, and Systematic Reviews: Proof of Concept with Adalimumab," Drug Safety, Springer, vol. 41(12), pages 1397-1410, December.
    6. Gianluca Trifirò & Janet Sultana & Andrew Bate, 2018. "From Big Data to Smart Data for Pharmacovigilance: The Role of Healthcare Databases and Other Emerging Sources," Drug Safety, Springer, vol. 41(2), pages 143-149, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:drugsa:v:43:y:2020:i:9:d:10.1007_s40264-020-00943-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/economics/journal/40264 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.