IDEAS home Printed from https://ideas.repec.org/a/spr/drugsa/v42y2019i6d10.1007_s40264-019-00820-7.html
   My bibliography  Save this article

Correction to: A Machine-Learning Algorithm to Optimise Automated Adverse Drug Reaction Detection from Clinical Coding

Author

Listed:
  • Christopher McMaster

    (Austin Health
    University of Melbourne)

  • David Liew

    (Austin Health
    University of Melbourne)

  • Claire Keith

    (Austin Health)

  • Parnaz Aminian

    (Austin Health)

  • Albert Frauman

    (Austin Health
    University of Melbourne)

Abstract

CK: Principal Investigator. CM and CK were responsible for the study design and conception; all authors were responsible for acquisition and validation of the data; CM was responsible for analysis and interpretation of the data; and all authors contributed to reviewing drafts of the manuscript and approved the final version for publication.

Suggested Citation

  • Christopher McMaster & David Liew & Claire Keith & Parnaz Aminian & Albert Frauman, 2019. "Correction to: A Machine-Learning Algorithm to Optimise Automated Adverse Drug Reaction Detection from Clinical Coding," Drug Safety, Springer, vol. 42(6), pages 807-807, June.
  • Handle: RePEc:spr:drugsa:v:42:y:2019:i:6:d:10.1007_s40264-019-00820-7
    DOI: 10.1007/s40264-019-00820-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40264-019-00820-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40264-019-00820-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqing Zhao & Yue Yu & Hanyin Wang & Yikuan Li & Yu Deng & Guoqian Jiang & Yuan Luo, 2022. "Machine Learning in Causal Inference: Application in Pharmacovigilance," Drug Safety, Springer, vol. 45(5), pages 459-476, May.
    2. Heba Edrees & Wenyu Song & Ania Syrowatka & Aurélien Simona & Mary G. Amato & David W. Bates, 2022. "Intelligent Telehealth in Pharmacovigilance: A Future Perspective," Drug Safety, Springer, vol. 45(5), pages 449-458, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:drugsa:v:42:y:2019:i:6:d:10.1007_s40264-019-00820-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/economics/journal/40264 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.