IDEAS home Printed from https://ideas.repec.org/a/spr/drugsa/v37y2014i10p777-790.html
   My bibliography  Save this article

Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art

Author

Listed:
  • Rave Harpaz
  • Alison Callahan
  • Suzanne Tamang
  • Yen Low
  • David Odgers
  • Sam Finlayson
  • Kenneth Jung
  • Paea LePendu
  • Nigam Shah

Abstract

Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. It is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event (ADE) detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources—such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs—that are amenable to text mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance. Copyright Springer International Publishing Switzerland 2014

Suggested Citation

  • Rave Harpaz & Alison Callahan & Suzanne Tamang & Yen Low & David Odgers & Sam Finlayson & Kenneth Jung & Paea LePendu & Nigam Shah, 2014. "Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art," Drug Safety, Springer, vol. 37(10), pages 777-790, October.
  • Handle: RePEc:spr:drugsa:v:37:y:2014:i:10:p:777-790
    DOI: 10.1007/s40264-014-0218-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40264-014-0218-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40264-014-0218-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqing Zhao & Yue Yu & Hanyin Wang & Yikuan Li & Yu Deng & Guoqian Jiang & Yuan Luo, 2022. "Machine Learning in Causal Inference: Application in Pharmacovigilance," Drug Safety, Springer, vol. 45(5), pages 459-476, May.
    2. Galit Klein & Eyal Eckhaus, 2017. "Sensemaking and sensegiving as predicting organizational crisis," Risk Management, Palgrave Macmillan, vol. 19(3), pages 225-244, August.
    3. Yuan Luo & William K. Thompson & Timothy M. Herr & Zexian Zeng & Mark A. Berendsen & Siddhartha R. Jonnalagadda & Matthew B. Carson & Justin Starren, 2017. "Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review," Drug Safety, Springer, vol. 40(11), pages 1075-1089, November.
    4. Tavpritesh Sethi & Nigam H. Shah, 2017. "Pharmacovigilance Using Textual Data: The Need to Go Deeper and Wider into the Con(text)," Drug Safety, Springer, vol. 40(11), pages 1047-1048, November.
    5. Susan Colilla & Elad Yom Tov & Ling Zhang & Marie-Laure Kurzinger & Stephanie Tcherny-Lessenot & Catherine Penfornis & Shang Jen & Danny S. Gonzalez & Patrick Caubel & Susan Welsh & Juhaeri Juhaeri, 2017. "Validation of New Signal Detection Methods for Web Query Log Data Compared to Signal Detection Algorithms Used With FAERS," Drug Safety, Springer, vol. 40(5), pages 399-408, May.
    6. Eyal Eckhaus & Zachary Sheaffer, 2018. "Managerial hubris detection: the case of Enron," Risk Management, Palgrave Macmillan, vol. 20(4), pages 304-325, November.
    7. Lucie M. Gattepaille & Sara Hedfors Vidlin & Tomas Bergvall & Carrie E. Pierce & Johan Ellenius, 2020. "Prospective Evaluation of Adverse Event Recognition Systems in Twitter: Results from the Web-RADR Project," Drug Safety, Springer, vol. 43(8), pages 797-808, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:drugsa:v:37:y:2014:i:10:p:777-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/economics/journal/40264 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.