IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v5y2023i3d10.1007_s42521-023-00085-x.html
   My bibliography  Save this article

What drives cryptocurrency returns? A sparse statistical jump model approach

Author

Listed:
  • Federico P. Cortese

    (University of Milano-Bicocca)

  • Petter N. Kolm

    (New York University)

  • Erik Lindström

    (Lund University)

Abstract

We apply the statistical sparse jump model, a recently developed, interpretable and robust regime-switching model, to infer key features that drive the return dynamics of the largest cryptocurrencies. The algorithm jointly performs feature selection, parameter estimation, and state classification. Our large set of candidate features are based on cryptocurrency, sentiment and financial market-based time series that have been identified in the emerging literature to affect cryptocurrency returns, while others are new. In our empirical work, we demonstrate that a three-state model best describes the dynamics of cryptocurrency returns. The states have natural market-based interpretations as they correspond to bull, neutral, and bear market regimes, respectively. Using the data-driven feature selection methodology, we are able to determine which features are important and which ones are not. In particular, out of the set of candidate features, we show that first moments of returns, features representing trends and reversal signals, market activity and public attention are key drivers of crypto market dynamics.

Suggested Citation

  • Federico P. Cortese & Petter N. Kolm & Erik Lindström, 2023. "What drives cryptocurrency returns? A sparse statistical jump model approach," Digital Finance, Springer, vol. 5(3), pages 483-518, December.
  • Handle: RePEc:spr:digfin:v:5:y:2023:i:3:d:10.1007_s42521-023-00085-x
    DOI: 10.1007/s42521-023-00085-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-023-00085-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-023-00085-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Clustering; Blockchain; Cryptocurrencies; Feature selection; Regime switching; Unsupervised learning;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:5:y:2023:i:3:d:10.1007_s42521-023-00085-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.