IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v46y2023i2d10.1007_s10203-023-00388-z.html
   My bibliography  Save this article

Revisiting the 1/N-strategy: a neural network framework for optimal strategies

Author

Listed:
  • Marcos Escobar-Anel

    (University of Western Ontario)

  • Lorenz Theilacker

    (Technical University of Munich)

  • Rudi Zagst

    (Technical University of Munich)

Abstract

This work has two main objectives. First, we design a data-driven neural network approach to portfolio optimization within expected utility theory. The methodology is inspired by Li and Forsyth (Insur Math Econ 86:189–204, 2019. https://doi.org/10.1016/j.insmatheco.2019.03.001 ), who worked on target based defined contribution plans. Our proposal and the architecture of the model is flexible enough to address a variety of specific portfolio problems, from standard optimal utility allocation with constraints, to optimal deviations from a benchmark. Using the celebrated 1/N-Strategy (see DeMiguel et al. in Rev Financ Stud 22(5):1915–1953, 2007. https://doi.org/10.1093/rfs/hhm075 ) as benchmark constitutes the second objective of the paper. We consider two assets on a single path of historical return data for an investor whose utility is represented by a constant relative risk aversion function. Across several levels of risk aversion, we revisit the literature claims that it is essentially impossible to significantly outperform 1/N. Using our advanced method, we confirm that this is only true for high levels of risk aversion, but the 1/N can be consistently outperformed for low and moderate risk aversion levels.

Suggested Citation

  • Marcos Escobar-Anel & Lorenz Theilacker & Rudi Zagst, 2023. "Revisiting the 1/N-strategy: a neural network framework for optimal strategies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 505-542, December.
  • Handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00388-z
    DOI: 10.1007/s10203-023-00388-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-023-00388-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-023-00388-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Dynamic portfolio optimization; Expected utility theory; Neural network architecture; Financial factors;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00388-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.