A moments and strike matching binomial algorithm for pricing American Put options
Author
Abstract
Suggested Citation
DOI: 10.1007/s10203-007-0077-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Figlewski, Stephen & Gao, Bin, 1999.
"The adaptive mesh model: a new approach to efficient option pricing,"
Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
- Stephen Figlewski & Bin Gao, 1998. "The Adaptive Mesh Model: A New Approach to Efficient Option Pricing," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-032, New York University, Leonard N. Stern School of Business-.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
- Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.
- Yuh‐Dauh Lyuu & Yu‐Quan Zhang, 2023. "Pricing multiasset time‐varying double‐barrier options with time‐dependent parameters," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 404-434, March.
- Minqiang Li, 2010.
"A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes,"
Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
- Li, Minqiang, 2009. "A Quasi-analytical Interpolation Method for Pricing American Options under General Multi-dimensional Diffusion Processes," MPRA Paper 17348, University Library of Munich, Germany.
- Mattia Fabbri & Pier Giuseppe Giribone, 2020. "Design, implementation and validation of advanced lattice techniques for pricing EAKO — European American Knock-Out option," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-26, February.
- Tian-Shyr Dai, 2009. "Efficient option pricing on stocks paying discrete or path-dependent dividends with the stair tree," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 827-838.
- Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
- Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
- U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
- Lu, Yu-Ming & Lyuu, Yuh-Dauh, 2023. "Very fast algorithms for implied barriers and moving-barrier options pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 251-271.
- Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
- Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007.
"Optimal stopping made easy,"
Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
- Svetlana Boyarchenko & Sergey Levendorskiy, 2004. "Optimal stopping made easy," Finance 0410016, University Library of Munich, Germany.
- Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
- Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
- Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
- Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
- Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
- Hoque, Ariful & Le, Thi & Hasan, Morshadul & Abedin, Mohammad Zoynul, 2024. "Does market efficiency matter for Shanghai 50 ETF index options?," Research in International Business and Finance, Elsevier, vol. 67(PB).
- Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
- Jobst, Andreas A., 2014.
"Measuring systemic risk-adjusted liquidity (SRL)—A model approach,"
Journal of Banking & Finance, Elsevier, vol. 45(C), pages 270-287.
- Andreas Jobst, 2012. "Measuring Systemic Risk-Adjusted Liquidity (SRL): A Model Approach," IMF Working Papers 2012/209, International Monetary Fund.
More about this item
Keywords
Binary tree methods; Option pricing; Hedging; American Put options; G13; C63; C02; 60J20; 65C40; 91B70; 60F05;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:31:y:2008:i:1:p:33-49. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.