IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i3d10.1007_s00180-024-01545-7.html
   My bibliography  Save this article

Using the Krylov subspace formulation to improve regularisation and interpretation in partial least squares regression

Author

Listed:
  • Tommy Löfstedt

    (Umeå University)

Abstract

Partial least squares regression (PLS-R) has been an important regression method in the life sciences and many other fields for decades. However, PLS-R is typically solved using an opaque algorithmic approach, rather than through an optimisation formulation and procedure. There is a clear optimisation formulation of the PLS-R problem based on a Krylov subspace formulation, but it is only rarely considered. The popularity of PLS-R is attributed to the ability to interpret the data through the model components, but the model components are not available when solving the PLS-R problem using the Krylov subspace formulation. We therefore highlight a simple reformulation of the PLS-R problem using the Krylov subspace formulation as a promising modelling framework for PLS-R, and illustrate one of the main benefits of this reformulation—that it allows arbitrary penalties of the regression coefficients in the PLS-R model. Further, we propose an approach to estimate the PLS-R model components for the solution found through the Krylov subspace formulation, that are those we would have obtained had we been able to use the common algorithms for estimating the PLS-R model. We illustrate the utility of the proposed method on simulated and real data.

Suggested Citation

  • Tommy Löfstedt, 2025. "Using the Krylov subspace formulation to improve regularisation and interpretation in partial least squares regression," Computational Statistics, Springer, vol. 40(3), pages 1621-1642, March.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01545-7
    DOI: 10.1007/s00180-024-01545-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01545-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01545-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01545-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.