IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i3d10.1007_s00180-024-01531-z.html
   My bibliography  Save this article

Positive time series regression models: theoretical and computational aspects

Author

Listed:
  • Taiane Schaedler Prass

    (Universidade Federal do Rio Grande do Sul)

  • Guilherme Pumi

    (Universidade Federal do Rio Grande do Sul)

  • Cleiton Guollo Taufemback

    (Universidade Federal do Rio Grande do Sul)

  • Jonas Hendler Carlos

    (Universidade Federal do Rio Grande do Sul)

Abstract

This paper discusses dynamic ARMA-type regression models for positive time series, which can handle bounded non-Gaussian time series without requiring data transformations. Our proposed model includes a conditional mean modeled by a dynamic structure containing autoregressive and moving average terms, time-varying covariates, unknown parameters, and link functions. Additionally, we present the PTSR package and discuss partial maximum likelihood estimation, asymptotic theory, hypothesis testing inference, diagnostic analysis, and forecasting for a variety of regression-based dynamic models for positive time series. A Monte Carlo simulation and a real data application are provided.

Suggested Citation

  • Taiane Schaedler Prass & Guilherme Pumi & Cleiton Guollo Taufemback & Jonas Hendler Carlos, 2025. "Positive time series regression models: theoretical and computational aspects," Computational Statistics, Springer, vol. 40(3), pages 1185-1215, March.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01531-z
    DOI: 10.1007/s00180-024-01531-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01531-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01531-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01531-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.