IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i2d10.1007_s00180-024-01506-0.html
   My bibliography  Save this article

Projection predictive variable selection for discrete response families with finite support

Author

Listed:
  • Frank Weber

    (Rostock University Medical Center)

  • Änne Glass

    (Rostock University Medical Center)

  • Aki Vehtari

    (Aalto University)

Abstract

The projection predictive variable selection is a decision-theoretically justified Bayesian variable selection approach achieving an outstanding trade-off between predictive performance and sparsity. Its projection problem is not easy to solve in general because it is based on the Kullback–Leibler divergence from a restricted posterior predictive distribution of the so-called reference model to the parameter-conditional predictive distribution of a candidate model. Previous work showed how this projection problem can be solved for response families employed in generalized linear models and how an approximate latent-space approach can be used for many other response families. Here, we present an exact projection method for all response families with discrete and finite support, called the augmented-data projection. A simulation study for an ordinal response family shows that the proposed method performs better than or similarly to the previously proposed approximate latent-space projection. The cost of the slightly better performance of the augmented-data projection is a substantial increase in runtime. Thus, if the augmented-data projection’s runtime is too high, we recommend the latent projection in the early phase of the model-building workflow and the augmented-data projection for final results. The ordinal response family from our simulation study is supported by both projection methods, but we also include a real-world cancer subtyping example with a nominal response family, a case that is not supported by the latent projection.

Suggested Citation

  • Frank Weber & Änne Glass & Aki Vehtari, 2025. "Projection predictive variable selection for discrete response families with finite support," Computational Statistics, Springer, vol. 40(2), pages 701-721, February.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01506-0
    DOI: 10.1007/s00180-024-01506-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01506-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01506-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01506-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.