IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01479-0.html
   My bibliography  Save this article

A difference-based method for testing no effect in nonparametric regression

Author

Listed:
  • Zhijian Li

    (BNU-HKBU United International College)

  • Tiejun Tong

    (Hong Kong Baptist University)

  • Yuedong Wang

    (University of California)

Abstract

The paper proposes a novel difference-based method for testing the hypothesis of no relationship between the dependent and independent variables. We construct three test statistics for nonparametric regression with Gaussian and non-Gaussian random errors. These test statistics have the standard normal as the asymptotic null distribution. Furthermore, we show that these tests can detect local alternatives that converge to the null hypothesis at a rate close to $$n^{-1/2}$$ n - 1 / 2 previously achieved only by the residual-based tests. We also propose a permutation test as a flexible alternative. Our difference-based method does not require estimating the mean function or its first derivative, making it easy to implement and computationally efficient. Simulation results demonstrate that our new tests are more powerful than existing methods, especially when the sample size is small. The usefulness of the proposed tests is also illustrated using two real data examples.

Suggested Citation

  • Zhijian Li & Tiejun Tong & Yuedong Wang, 2025. "A difference-based method for testing no effect in nonparametric regression," Computational Statistics, Springer, vol. 40(1), pages 153-176, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01479-0
    DOI: 10.1007/s00180-024-01479-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01479-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01479-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01479-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.