IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i7d10.1007_s00180-024-01466-5.html
   My bibliography  Save this article

Bayesian regression models in gretl: the BayTool package

Author

Listed:
  • Luca Pedini

    (Università Politecnica delle Marche)

Abstract

This article presents the gretl package BayTool which integrates the software functionalities, mostly concerned with frequentist approaches, with Bayesian estimation methods of commonly used econometric models. Computational efficiency is achieved by pairing an extensive use of Gibbs sampling for posterior simulation with the possibility of splitting single-threaded experiments into multiple cores or machines by means of parallelization. From the user’s perspective, the package requires only basic knowledge of gretl scripting to fully access its functionality, while providing a point-and-click solution in the form of a graphical interface for a less experienced audience. These features, in particular, make BayTool stand out as an excellent teaching device without sacrificing more advanced or complex applications.

Suggested Citation

  • Luca Pedini, 2024. "Bayesian regression models in gretl: the BayTool package," Computational Statistics, Springer, vol. 39(7), pages 3547-3578, December.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:7:d:10.1007_s00180-024-01466-5
    DOI: 10.1007/s00180-024-01466-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01466-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01466-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fair, Ray C, 1978. "A Theory of Extramarital Affairs," Journal of Political Economy, University of Chicago Press, vol. 86(1), pages 45-61, February.
    2. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    3. Błażejowski, Marcin & Kwiatkowski, Jacek, 2015. "Bayesian Model Averaging and Jointness Measures for gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i05).
    4. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    5. Anglin, Paul M & Gencay, Ramazan, 1996. "Semiparametric Estimation of a Hedonic Price Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 633-648, Nov.-Dec..
    6. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
    7. Dootika Vats & James M Flegal & Galin L Jones, 2019. "Multivariate output analysis for Markov chain Monte Carlo," Biometrika, Biometrika Trust, vol. 106(2), pages 321-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    2. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    3. Renata Wróbel-Rotter, 2016. "Impulse Response Functions in the Dynamic Stochastic General Equilibrium Vector Autoregression Model," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(2), pages 93-114, June.
    4. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    5. Michiel de Pooter & Francesco Ravazzolo & Rene Segers & Herman K. van Dijk, 2008. "Bayesian near-boundary analysis in basic macroeconomic time-series models," Advances in Econometrics, in: Bayesian Econometrics, pages 331-402, Emerald Group Publishing Limited.
    6. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2018. "DSGE-based Priors for BVARs & Quasi-Bayesian DSGE Estimation," Cardiff Economics Working Papers E2018/5, Cardiff University, Cardiff Business School, Economics Section.
    7. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    8. Charles S. Bos & Ronald J. Mahieu & Herman K. Van Dijk, 2000. "Daily exchange rate behaviour and hedging of currency risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 671-696.
    9. Michiel D. de Pooter & René Segers & Herman K. van Dijk, 2006. "On the Practice of Bayesian Inference in Basic Economic Time Series Models using Gibbs Sampling," Tinbergen Institute Discussion Papers 06-076/4, Tinbergen Institute.
    10. Florian Pelgrin & Stéphane Adjemian, 2008. "Un regard bayésien sur les modèles dynamiques de la macroéconomie," Économie et Prévision, Programme National Persée, vol. 183(2), pages 127-152.
    11. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2020. "DSGE-based priors for BVARs and quasi-Bayesian DSGE estimation," Econometrics and Statistics, Elsevier, vol. 16(C), pages 1-27.
    12. Y. K. Tse & Xibin Zhang & Jun Yu, 2004. "Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 158-169.
    13. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    14. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    15. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    16. de Pooter, M.D. & Segers, R. & van Dijk, H.K., 2006. "Gibbs sampling in econometric practice," Econometric Institute Research Papers EI 2006-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Garth John Holloway, 2020. "Sustainable Land-Use Pathway Ranking and Selection," Sustainability, MDPI, vol. 12(19), pages 1-31, September.
    18. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    19. Thomai Filippeli, 2011. "Theoretical Priors for BVAR Models & Quasi-Bayesian DSGE Model Estimation," 2011 Meeting Papers 396, Society for Economic Dynamics.
    20. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:7:d:10.1007_s00180-024-01466-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.