IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i5d10.1007_s00180-023-01415-8.html
   My bibliography  Save this article

On testing the equality between interquartile ranges

Author

Listed:
  • Luca Greco

    (University Giustino Fortunato)

  • George Luta

    (Georgetown University)

  • Rand Wilcox

    (University of Southern California)

Abstract

The interquartile range is a statistical measure well suited to describe the variability of the data at hand, both at the population level and for sample data. The interquartile range is particularly useful when the distribution of the data is asymmetric or irregularly shaped. Here, the use of the interquartile range is investigated when the main aim is to compare the variability of two distributions using two independent random samples, without the need to make any distributional assumptions. Several techniques are compared through numerical studies and real data examples, with a particular attention given to the use of sample quantiles based on the Harrel-Davis estimator or the quantile regression.

Suggested Citation

  • Luca Greco & George Luta & Rand Wilcox, 2024. "On testing the equality between interquartile ranges," Computational Statistics, Springer, vol. 39(5), pages 2873-2898, July.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01415-8
    DOI: 10.1007/s00180-023-01415-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01415-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01415-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He X. & Hu F., 2002. "Markov Chain Marginal Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 783-795, September.
    2. William Gould, 1998. "Interquartile and simultaneous-quantile regression," Stata Technical Bulletin, StataCorp LP, vol. 7(38).
    3. Xingdong Feng & Xuming He & Jianhua Hu, 2011. "Wild bootstrap for quantile regression," Biometrika, Biometrika Trust, vol. 98(4), pages 995-999.
    4. Hahn, Jinyong, 1995. "Bootstrapping Quantile Regression Estimators," Econometric Theory, Cambridge University Press, vol. 11(1), pages 105-121, February.
    5. Leena Choi & Jeffrey D Blume & William D Dupont, 2015. "Elucidating the Foundations of Statistical Inference with 2 x 2 Tables," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
    3. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
    4. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    5. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    6. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    7. J. C. Escanciano & S. C. Goh, 2019. "Quantile-Regression Inference With Adaptive Control of Size," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1382-1393, July.
    8. Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, vol. 3(3), pages 1-13, September.
    9. Andreas Hagemann, 2017. "Cluster-Robust Bootstrap Inference in Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 446-456, January.
    10. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    11. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    12. Wang, Yafeng & Graham, Brett, 2009. "Generalized Maximum Entropy estimation of discrete sequential move games of perfect information," MPRA Paper 21331, University Library of Munich, Germany.
    13. Vadim Volkov, 2016. "Legal and Extralegal Origins of Sentencing Disparities: Evidence from Russia's Criminal Courts," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(4), pages 637-665, December.
    14. Tobias Angel & Alexandre Berthe & Valeria Costantini & Mariagrazia D’Angeli, 2024. "How the nature of inequality reduction matters for CO2 emissions," Working Papers 2024.14, Fondazione Eni Enrico Mattei.
    15. Malmendier, Ulrike M. & Botsch, Matthew J., 2020. "The Long Shadows of the Great Inflation: Evidence from Residential Mortgages," CEPR Discussion Papers 14934, C.E.P.R. Discussion Papers.
    16. Robert Hill, 2019. "Does IEB make the grade? Alternative testing methods and Educational outcomes: The case of the IEB in South Africa," Working Papers 201904, University of Cape Town, Development Policy Research Unit.
    17. Christophe Muller & Christophe Nordman, 2004. "Which Human Capital Matters For Rich And Poor'S Wages: Evidence From Matched Worker-Firm Data From Tunisia," Working Papers. Serie AD 2004-28, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    18. Marco Angrisani & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2021. "Information Redundancy Neglect versus Overconfidence: A Social Learning Experiment," American Economic Journal: Microeconomics, American Economic Association, vol. 13(3), pages 163-197, August.
    19. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    20. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01415-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.