IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i5d10.1007_s00180-023-01400-1.html
   My bibliography  Save this article

Classifying for images based on the extracted probability density function and the quasi Bayesian method

Author

Listed:
  • Hieu Huynh-Van

    (Ho Chi Minh City University of Technology (HCMUT)
    Vietnam National University Ho Chi Minh City
    Industrial University of Ho Chi Minh City)

  • Tuan Le-Hoang

    (Vietnam National University Ho Chi Minh City
    University of Information Technology)

  • Tai Vo-Van

    (Can Tho University)

Abstract

This study presents a novel algorithm for image classification based on a quasi-Bayesian approach and the extraction of probability density functions (PDFs). First, representative PDFs are extracted from each image using its features. Next, a measure is developed to evaluate the similarity between the extracted PDFs. Finally, an algorithm is established for determining prior probabilities using fuzzy clustering techniques. By combining these improvements, we develop a more efficient algorithm for classifying image data. An image is assigned to a specific group if it has the highest value of prior probability and a similar level to that group. We explain the proposed algorithm step-by-step with a numerical example and clearly demonstrate its convergence. When applied to multiple image datasets, the proposed algorithm has shown stability and efficiency, outperforming many other statistical and machine learning methods. Additionally, we have developed a Matlab procedure to apply the proposed algorithm to real image datasets. These applications demonstrate the potential of research in various fields related to the digital revolution and artificial intelligence.

Suggested Citation

  • Hieu Huynh-Van & Tuan Le-Hoang & Tai Vo-Van, 2024. "Classifying for images based on the extracted probability density function and the quasi Bayesian method," Computational Statistics, Springer, vol. 39(5), pages 2677-2701, July.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01400-1
    DOI: 10.1007/s00180-023-01400-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01400-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01400-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ha Che-Ngoc & Thao Nguyen-Trang & Tran Nguyen-Bao & Trung Nguyen-Thoi & Tai Vo-Van, 2022. "A new approach for face detection using the maximum function of probability density functions," Annals of Operations Research, Springer, vol. 312(1), pages 99-119, May.
    2. Dinh Phamtoan & Tai Vovan, 2023. "The fuzzy cluster analysis for interval value using genetic algorithm and its application in image recognition," Computational Statistics, Springer, vol. 38(1), pages 25-51, March.
    3. Tai Vo Van & T. Pham-Gia, 2010. "Clustering probability distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1891-1910.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thao Nguyentrang & Tai Vovan, 2017. "Fuzzy clustering of probability density functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 583-601, March.
    2. Thao Nguyen-Trang & Tai Vo-Van, 2017. "A new approach for determining the prior probabilities in the classification problem by Bayesian method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 629-643, September.
    3. Ha Che-Ngoc & Thao Nguyen-Trang & Tran Nguyen-Bao & Trung Nguyen-Thoi & Tai Vo-Van, 2022. "A new approach for face detection using the maximum function of probability density functions," Annals of Operations Research, Springer, vol. 312(1), pages 99-119, May.
    4. Tai Vovan & Dinh Phamtoan & Le Hoang Tuan & Thao Nguyentrang, 2021. "An automatic clustering for interval data using the genetic algorithm," Annals of Operations Research, Springer, vol. 303(1), pages 359-380, August.
    5. Tai VoVan & Thao Nguyen Trang, 2018. "Similar Coefficient of Cluster for Discrete Elements," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 19-36, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01400-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.