IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i4d10.1007_s00180-024-01470-9.html
   My bibliography  Save this article

Variational Bayesian Lasso for spline regression

Author

Listed:
  • Larissa C. Alves

    (State University of Campinas: Universidade Estadual de Campinas)

  • Ronaldo Dias

    (State University of Campinas: Universidade Estadual de Campinas)

  • Helio S. Migon

    (State University of Campinas: Universidade Estadual de Campinas)

Abstract

This work presents a new scalable automatic Bayesian Lasso methodology with variational inference for non-parametric splines regression that can capture the non-linear relationship between a response variable and predictor variables. Note that under non-parametric point of view the regression curve is assumed to lie in a infinite dimension space. Regression splines use a finite approximation of this infinite space, representing the regression function by a linear combination of basis functions. The crucial point of the approach is determining the appropriate number of bases or equivalently number of knots, avoiding over-fitting/under-fitting. A decision-theoretic approach was devised for knot selection. Comprehensive simulation studies were conducted in challenging scenarios to compare alternative criteria for knot selection, thereby ensuring the efficacy of the proposed algorithms. Additionally, the performance of the proposed method was assessed using real-world datasets. The novel procedure demonstrated good performance in capturing the underlying data structure by selecting the appropriate number of knots/basis.

Suggested Citation

  • Larissa C. Alves & Ronaldo Dias & Helio S. Migon, 2024. "Variational Bayesian Lasso for spline regression," Computational Statistics, Springer, vol. 39(4), pages 2039-2064, June.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-024-01470-9
    DOI: 10.1007/s00180-024-01470-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01470-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01470-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-024-01470-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.