IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i4d10.1007_s00180-023-01384-y.html
   My bibliography  Save this article

Semiparametric Bayesian approach to assess non-inferiority with assay sensitivity in a three-arm trial with normally distributed endpoints

Author

Listed:
  • Niansheng Tang

    (Yunnan University)

  • Fan Liang

    (Yunnan University)

  • Depeng Jiang

    (University of Manitoba)

Abstract

The non-inferiority (NI) trial is designed to show that an experimental treatment is not worse than an active reference by more than a pre-specified margin. Traditional NI trials do not include a placebo for ethical reasons; however, three-arm NI trials consisting of placebo, reference, and experimental treatment, can test the NI of experimental treatment to the reference while assessing the superiority of the reference over placebo. Assay sensitivity (AS) of a clinical trial is defined as its ability to distinguish between an effective and ineffective treatment and has been used to assess the superiority of the reference over placebo. Bayesian approaches have been predominantly used in clinical trials, particularly in NI trials. Most previous Bayesian approaches have focused on parametric priors of treatment effects. Restriction to parametric priors can mislead investigators into an inappropriate illusion of posterior certainty, leading to misleading decisions and inference. In this paper, we develop a novel semiparametric Bayesian approach to simultaneously assess NI of experimental treatment over the reference and AS of the reference over placebo in a three-arm trial with normally distributed endpoints. We use Dirichlet process priors to specify the priors of treatment effects. A Markov chain Monte Carlo algorithm is developed to calculate the posterior probability for assessing NI and AS. Simulation studies show that our proposed method is comparable to, or better than, the frequentist approach and parametric Bayesian methods in terms of the ability of controlling the type I errors and empirical statistical powers for testing NI. Data from two real trials are illustrated by the proposed methods. We recommend the usage of the proposed method in a three-arm trial.

Suggested Citation

  • Niansheng Tang & Fan Liang & Depeng Jiang, 2024. "Semiparametric Bayesian approach to assess non-inferiority with assay sensitivity in a three-arm trial with normally distributed endpoints," Computational Statistics, Springer, vol. 39(4), pages 2157-2181, June.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01384-y
    DOI: 10.1007/s00180-023-01384-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01384-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01384-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01384-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.