IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01368-y.html
   My bibliography  Save this article

A hybrid deterministic–deterministic approach for high-dimensional Bayesian variable selection with a default prior

Author

Listed:
  • Jieun Lee

    (Kansas State University)

  • Gyuhyeong Goh

    (Kansas State University)

Abstract

Identifying relevant variables among numerous potential predictors has been of primary interest in modern regression analysis. While stochastic search algorithms have surged as a dominant tool for Bayesian variable selection, when the number of potential predictors is large, their practicality is constantly challenged due to high computational cost as well as slow convergence. In this paper, we propose a new Bayesian variable selection scheme by using hybrid deterministic–deterministic variable selection (HD-DVS) algorithm that asymptotically ensures a rapid convergence to the global mode of the posterior model distribution. A key feature of HD-DVS is that it allows us to circumvent the iterative computation of inverse matrices, which is a common computational bottleneck in Bayesian variable selection. A simulation study is conducted to demonstrate that our proposed method outperforms existing Bayesian and frequentist methods. An analysis of the Bardet–Biedl syndrome gene expression data is presented to illustrate the applicability of HD-DVS to real data.

Suggested Citation

  • Jieun Lee & Gyuhyeong Goh, 2024. "A hybrid deterministic–deterministic approach for high-dimensional Bayesian variable selection with a default prior," Computational Statistics, Springer, vol. 39(3), pages 1659-1681, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01368-y
    DOI: 10.1007/s00180-023-01368-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01368-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01368-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01368-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.