IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-023-01328-6.html
   My bibliography  Save this article

Improving upon the effective sample size based on Godambe information for block likelihood inference

Author

Listed:
  • Rahul Mukerjee

    (Indian Institute of Management Calcutta)

Abstract

We consider the effective sample size, based on Godambe information, for block likelihood inference which is an attractive and computationally feasible alternative to full likelihood inference for large correlated datasets. With reference to a Gaussian random field having a constant mean, we explore how the choice of blocks impacts this effective sample size. This is done by introducing a column-wise blocking method which spreads out the spatial points within each block, instead of keeping them close together as the existing row-wise blocking method does. It is seen that column-wise blocking can lead to considerable gains in effective sample size and efficiency compared to row-wise blocking, while retaining computational simplicity. Analytical results in this direction are obtained under the AR (1) model. The insights so found facilitate the study of other one-dimensional correlation models as well as correlation models on a plane, where closed form expressions are intractable. Simulations are seen to provide support to our conclusions.

Suggested Citation

  • Rahul Mukerjee, 2024. "Improving upon the effective sample size based on Godambe information for block likelihood inference," Computational Statistics, Springer, vol. 39(2), pages 891-904, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-023-01328-6
    DOI: 10.1007/s00180-023-01328-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01328-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01328-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-023-01328-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.