IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-022-01302-8.html
   My bibliography  Save this article

An evolutionary estimation procedure for generalized semilinear regression trees

Author

Listed:
  • Giulia Vannucci

    (University of Florence)

  • Anna Gottard

    (University of Florence)

Abstract

In many applications, the presence of interactions or even mild non-linearities can affect inference and predictions. For that reason, we suggest the use of a class of models laying between statistics and machine learning and we propose a learning procedure. The models combine a linear part and a tree component that is selected via an evolutionary algorithm, and they can be adopted for any kinds of response, such as, for instance, continuous, categorical, ordinal responses, and survival times. They are inherently interpretable but more flexible than standard regression models, as they easily capture non-linear and interaction effects. The proposed genetic-like learning algorithm allows avoiding a greedy search of the tree component. In a simulation study, we show that the proposed approach has a performance comparable with other machine learning algorithms, with a substantial gain in interpretability and transparency, and we illustrate the method on a real data set.

Suggested Citation

  • Giulia Vannucci & Anna Gottard, 2023. "An evolutionary estimation procedure for generalized semilinear regression trees," Computational Statistics, Springer, vol. 38(4), pages 1927-1946, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01302-8
    DOI: 10.1007/s00180-022-01302-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01302-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01302-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01302-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.