IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-022-01300-w.html
   My bibliography  Save this article

Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures

Author

Listed:
  • Christian Soize

    (Université Gustave Eiffel)

Abstract

This paper deals with the taking into account a given target set of realizations as constraints in the Kullback–Leibler divergence minimum principle (KLDMP). We present a novel probabilistic learning algorithm that makes it possible to use the KLDMP when the constraints are not defined by a target set of statistical moments for the quantity of interest (QoI) of an uncertain/stochastic computational model, but are defined by a target set of realizations for the QoI for which the statistical moments associated with these realizations are not or cannot be estimated. The method consists in defining a functional constraint, as the equality of the Fourier transforms of the posterior probability measure and the target probability measure, and in constructing a finite representation of the weak formulation of this functional constraint. The proposed approach allows for estimating the posterior probability measure of the QoI (unsupervised case) or of the posterior joint probability measure of the QoI with the control parameter (supervised case). The existence and the uniqueness of the posterior probability measure is analyzed for the two cases. The numerical aspects are detailed in order to facilitate the implementation of the proposed method. The presented application in high dimension demonstrates the efficiency and the robustness of the proposed algorithm.

Suggested Citation

  • Christian Soize, 2023. "Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures," Computational Statistics, Springer, vol. 38(4), pages 1879-1925, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01300-w
    DOI: 10.1007/s00180-022-01300-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01300-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01300-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01300-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.