IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i3d10.1007_s00180-022-01273-w.html
   My bibliography  Save this article

On the estimation of partially observed continuous-time Markov chains

Author

Listed:
  • Alan Riva-Palacio

    (IIMAS, UNAM)

  • Ramsés H. Mena

    (IIMAS, UNAM)

  • Stephen G. Walker

    (University of Texas at Austin)

Abstract

Motivated by the increasing use of discrete-state Markov processes across applied disciplines, a Metropolis–Hastings sampling algorithm is proposed for a partially observed process. Current approaches, both classical and Bayesian, have relied on imputing the missing parts of the process and working with a complete likelihood. However, from a Bayesian perspective, the use of latent variables is not necessary and exploiting the observed likelihood function, combined with a suitable Markov chain Monte Carlo method, results in an accurate and efficient approach. A comprehensive comparison with simulated and real data sets demonstrate our approach when compared with alternatives available in the literature.

Suggested Citation

  • Alan Riva-Palacio & Ramsés H. Mena & Stephen G. Walker, 2023. "On the estimation of partially observed continuous-time Markov chains," Computational Statistics, Springer, vol. 38(3), pages 1357-1389, September.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-022-01273-w
    DOI: 10.1007/s00180-022-01273-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01273-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01273-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. dos Reis & G. Smith, 2018. "Robust and consistent estimation of generators in credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 983-1001, June.
    2. M. Pfeuffer & L. Möstel & M. Fischer, 2019. "An extended likelihood framework for modelling discretely observed credit rating transitions," Quantitative Finance, Taylor & Francis Journals, vol. 19(1), pages 93-104, January.
    3. Yasunari Inamura, 2006. "Estimating Continuous Time Transition Matrices From Discretely Observed Data," Bank of Japan Working Paper Series 06-E-7, Bank of Japan.
    4. Mogens Bladt & Michael Sørensen, 2005. "Statistical inference for discretely observed Markov jump processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 395-410, June.
    5. Ruben Amoros & Ruth King & Hidenori Toyoda & Takashi Kumada & Philip J. Johnson & Thomas G. Bird, 2019. "A continuous-time hidden Markov model for cancer surveillance using serum biomarkers with application to hepatocellular carcinoma," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 67-86, August.
    6. Robert B. Israel & Jeffrey S. Rosenthal & Jason Z. Wei, 2001. "Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 245-265, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Möstel & Marius Pfeuffer & Matthias Fischer, 2020. "Statistical inference for Markov chains with applications to credit risk," Computational Statistics, Springer, vol. 35(4), pages 1659-1684, December.
    2. Greig Smith & Goncalo dos Reis, 2017. "Robust and Consistent Estimation of Generators in Credit Risk," Papers 1702.08867, arXiv.org, revised Oct 2017.
    3. Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    4. Alexandre Ounnas, 2020. "Worker Flows and Occupations in the CPS 1976-2010: A Framework for Adjusting the Data," LIDAM Discussion Papers IRES 2020008, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    5. Marius Pfeuffer & Goncalo dos Reis & Greig smith, 2018. "Capturing Model Risk and Rating Momentum in the Estimation of Probabilities of Default and Credit Rating Migrations," Papers 1809.09889, arXiv.org, revised Feb 2020.
    6. Lapshin, Viktor & Anton, Markov, 2022. "MCMC-based credit rating aggregation algorithm to tackle data insufficiency," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 50-72.
    7. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    8. Yasunari Inamura, 2006. "Estimating Continuous Time Transition Matrices From Discretely Observed Data," Bank of Japan Working Paper Series 06-E-7, Bank of Japan.
    9. Jia, Chen, 2016. "A solution to the reversible embedding problem for finite Markov chains," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 122-130.
    10. Yong Chen & Jianmin Chen, 2011. "On the Imbedding Problem for Three-State Time Homogeneous Markov Chains with Coinciding Negative Eigenvalues," Journal of Theoretical Probability, Springer, vol. 24(4), pages 928-938, December.
    11. Maximilian Hughes & Ralf Werner, 2016. "Choosing Markovian Credit Migration Matrices by Nonlinear Optimization," Risks, MDPI, vol. 4(3), pages 1-18, August.
    12. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    13. Jolakoski, Petar & Pal, Arnab & Sandev, Trifce & Kocarev, Ljupco & Metzler, Ralf & Stojkoski, Viktor, 2023. "A first passage under resetting approach to income dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Zhou, Richard, 2010. "Counterparty Risk Subject To ATE," MPRA Paper 28067, University Library of Munich, Germany.
    15. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    16. D'Amico, Guglielmo & Singh, Shakti & Selvamuthu, Dharmaraja, 2024. "Optimal investment-disinvestment choices in health-dependent variable annuity," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 1-15.
    17. Guglielmo D'Amico & Riccardo De Blasis & Philippe Regnault, 2020. "Confidence sets for dynamic poverty indexes," Papers 2006.06595, arXiv.org.
    18. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    19. Blöchlinger, Andreas, 2011. "Arbitrage-free credit pricing using default probabilities and risk sensitivities," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 268-281, February.
    20. Areski Cousin & Mohamed Reda Kheliouen, 2016. "A comparative study on the estimation of factor migration models," Working Papers halshs-01351926, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:3:d:10.1007_s00180-022-01273-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.