IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i4d10.1007_s00180-021-01186-0.html
   My bibliography  Save this article

Hybrid MLP-IDW approach based on nearest neighbor for spatial prediction

Author

Listed:
  • A. Tavassoli

    (University of Birjand)

  • Y. Waghei

    (University of Birjand)

  • A. Nazemi

    (Shahrood University of Technology)

Abstract

Conventional methods of spatial prediction, such as Kriging, require assumptions such as stationarity and isotropy, which are not easy to evaluate, and often do not hold for spatial data. For these methods, the spatial dependency structure between data should be accurately modeled, which requires expert knowledge in spatial statistics. On the other hand, spatial prediction using artificial neural network (ANN) has attracted considerable interest due to ANN’s ability in learning from data without the need for complex and specialized assumptions. However, ANN models require suitable input variables for better and efficient spatial prediction. This paper aims to improve the accuracy of ANNs spatial prediction using neighboring information. Given the general principle that ”closer spatial data are more dependent”, we tried to somehow enter data dependency into the network by using the neighboring observations. We proposed a hybrid model of ANN and inverse distance weighting, based on nearby observations. We also proposed an ANN-based model for spatial prediction based on weighted values of nearby observations. The accuracy of the models was compared through a simulation study. The results showed that using neighboring information to train ANN, dramatically increases the prediction accuracy.

Suggested Citation

  • A. Tavassoli & Y. Waghei & A. Nazemi, 2022. "Hybrid MLP-IDW approach based on nearest neighbor for spatial prediction," Computational Statistics, Springer, vol. 37(4), pages 1943-1962, September.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01186-0
    DOI: 10.1007/s00180-021-01186-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01186-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01186-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Youngmin Seo & Sungwon Kim & Vijay Singh, 2015. "Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2189-2204, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peyman Abbaszadeh, 2016. "Improving Hydrological Process Modeling Using Optimized Threshold-Based Wavelet De-Noising Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1701-1721, March.
    2. Morteza Pakdaman & Iman Babaeian & Zohreh Javanshiri & Yashar Falamarzi, 2022. "European Multi Model Ensemble (EMME): A New Approach for Monthly Forecast of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 611-623, January.
    3. Peyman Abbaszadeh, 2016. "Improving Hydrological Process Modeling Using Optimized Threshold-Based Wavelet De-Noising Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1701-1721, March.
    4. Vidoli, Francesco & Auteri, Monica, 2022. "Health-care demand and supply at municipal level: A spatial disaggregation approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01186-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.