IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i2d10.1007_s00180-021-01145-9.html
   My bibliography  Save this article

Multimodal information gain in Bayesian design of experiments

Author

Listed:
  • Quan Long

Abstract

One of the well-known challenges in optimal experimental design is how to efficiently estimate the nested integrations of the expected information gain. The Gaussian approximation and associated importance sampling have been shown to be effective at reducing the numerical costs. However, they may fail due to the non-negligible biases and the numerical instabilities. A new approach is developed to compute the expected information gain, when the posterior distribution is multimodal—a situation previously ignored by the methods aiming at accelerating the nested numerical integrations. Specifically, the posterior distribution is approximated using a mixture distribution constructed by multiple runs of global search for the modes and weighted local Laplace approximations. Under any given probability of capturing all the modes, we provide an estimation of the number of runs of searches, which is dimension independent. It is shown that the novel global-local multimodal approach can be significantly more accurate and more efficient than the other existing approaches, especially when the number of modes is large. The methods can be applied to the designs of experiments with both calibrated and uncalibrated observation noises.

Suggested Citation

  • Quan Long, 2022. "Multimodal information gain in Bayesian design of experiments," Computational Statistics, Springer, vol. 37(2), pages 865-885, April.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01145-9
    DOI: 10.1007/s00180-021-01145-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01145-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01145-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    2. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    3. Ana Werlang & Gabriel Cunha & João Bastos & Juliana Serra & Bruno Barbosa & Luiz Barroso, 2021. "Reliability Metrics for Generation Planning and the Role of Regulation in the Energy Transition: Case Studies of Brazil and Mexico," Energies, MDPI, vol. 14(21), pages 1-27, November.
    4. Elena-Corina Cipu, 2019. "Duality Results in Quasiinvex Variational Control Problems with Curvilinear Integral Functionals," Mathematics, MDPI, vol. 7(9), pages 1-9, September.
    5. Hanno Gottschalk & Marco Reese, 2021. "An Analytical Study in Multi-physics and Multi-criteria Shape Optimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 486-512, May.
    6. Karel Van Bockstal, 2020. "Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order)," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    7. Assed Haddad & Ahmed Hammad & Danielle Castro & Diego Vasco & Carlos Alberto Pereira Soares, 2021. "Framework for Assessing Urban Energy Sustainability," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    8. Savin Treanţă, 2019. "On Locally and Globally Optimal Solutions in Scalar Variational Control Problems," Mathematics, MDPI, vol. 7(9), pages 1-8, September.
    9. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.
    11. Ivan Francisco Yupanqui Tello & Alain Vande Wouwer & Daniel Coutinho, 2021. "A Concise Review of State Estimation Techniques for Partial Differential Equation Systems," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
    12. Christian Klein & Julien Riton & Nikola Stoilov, 2021. "Multi-domain spectral approach for the Hilbert transform on the real line," Partial Differential Equations and Applications, Springer, vol. 2(3), pages 1-19, June.
    13. Marco Cirant & Roberto Gianni & Paola Mannucci, 2020. "Short-Time Existence for a General Backward–Forward Parabolic System Arising from Mean-Field Games," Dynamic Games and Applications, Springer, vol. 10(1), pages 100-119, March.
    14. Song, Xiaona & Wang, Mi & Song, Shuai & Wang, Zhen, 2021. "Observer-based sliding mode control for stochastic hyperbolic PDE systems with quantized output signal," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    15. Mario Abundo & Enrica Pirozzi, 2019. "On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes," Mathematics, MDPI, vol. 7(10), pages 1-12, October.
    16. Christian Kuehn & Cinzia Soresina, 2020. "Numerical continuation for a fast-reaction system and its cross-diffusion limit," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-26, April.
    17. Zaiping Zhu & Andres Iglesias & Liqi Zhou & Lihua You & Jianjun Zhang, 2022. "PDE-Based 3D Surface Reconstruction from Multi-View 2D Images," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    18. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    19. Wei Zhou & Xingxing Hao & Kaidi Wang & Zhenyang Zhang & Yongxiang Yu & Haonan Su & Kang Li & Xin Cao & Arjan Kuijper, 2020. "Improved estimation of motion blur parameters for restoration from a single image," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    20. Denny Ivanal Hakim & Yoshihiro Sawano, 2021. "Complex interpolation of variable Morrey spaces," Mathematische Nachrichten, Wiley Blackwell, vol. 294(11), pages 2140-2150, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01145-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.