IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i4d10.1007_s00180-021-01090-7.html
   My bibliography  Save this article

Reduced-bias estimation of spatial autoregressive models with incompletely geocoded data

Author

Listed:
  • Flavio Santi

    (University of Verona)

  • Maria Michela Dickson

    (University of Trento)

  • Diego Giuliani

    (University of Trento)

  • Giuseppe Arbia

    (Catholic University of the Sacred Heart)

  • Giuseppe Espa

    (University of Trento)

Abstract

The application of spatial Cliff–Ord models requires information about spatial coordinates of statistical units to be reliable, which is usually the case in the context of areal data. With micro-geographic point-level data, however, such information is inevitably affected by locational errors, that can be generated intentionally by the data producer for privacy protection or can be due to inaccuracy of the geocoding procedures. This unfortunate circumstance can potentially limit the use of the spatial autoregressive modelling framework for the analysis of micro data, as the presence of locational errors may have a non-negligible impact on the estimates of model parameters. This contribution aims at developing a strategy to reduce the bias and produce more reliable inference for spatial models with location errors. The proposed estimation strategy models both the spatial stochastic process and the coarsening mechanism by means of a marked point process. The model is fitted through the maximisation of a doubly-marginalised likelihood function of the marked point process, which cleans out the effects of coarsening. The validity of the proposed approach is assessed by means of a Monte Carlo simulation study under different real-case scenarios, whereas it is applied to real data on house prices.

Suggested Citation

  • Flavio Santi & Maria Michela Dickson & Diego Giuliani & Giuseppe Arbia & Giuseppe Espa, 2021. "Reduced-bias estimation of spatial autoregressive models with incompletely geocoded data," Computational Statistics, Springer, vol. 36(4), pages 2563-2590, December.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01090-7
    DOI: 10.1007/s00180-021-01090-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01090-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01090-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dale L. Zimmerman, 2008. "Estimating the Intensity of a Spatial Point Process from Locations Coarsened by Incomplete Geocoding," Biometrics, The International Biometric Society, vol. 64(1), pages 262-270, March.
    2. Flavio Santi & Maria Michela Dickson & Giuseppe Espa & Emanuele Taufer & Andrea Mazzitelli, 2021. "Handling spatial dependence under unknown unit locations," Spatial Economic Analysis, Taylor & Francis Journals, vol. 16(2), pages 194-216, April.
    3. Giuseppe Arbia & Giuseppe Espa & Diego Giuliani, 2016. "Dirty spatial econometrics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 177-189, January.
    4. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    5. Giuseppe Espa & Diego Giuliani & Flavio Santi & Emanuele Taufer, 2017. "Model-based variance estimation in two-dimensional systematic sampling," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 265-275, December.
    6. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    7. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    8. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    9. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Koroglu & Yiguo Sun, 2016. "Functional-Coefficient Spatial Durbin Models with Nonparametric Spatial Weights: An Application to Economic Growth," Econometrics, MDPI, vol. 4(1), pages 1-16, February.
    2. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    3. Lin, Xu & Zhang, Jihu & Jiang, Shanhe, 2022. "Spatial and temporal correlations of crime in Detroit: Evidence from spatial dynamic panel data models," International Review of Law and Economics, Elsevier, vol. 72(C).
    4. Marbuah, George & Gren, Ing-Marie & Tirkaso, Wondmagegn Tafesse, 2021. "Social capital, economic development and carbon emissions: Empirical evidence from counties in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    6. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    7. Yang, Zhenlin & Yu, Jihai & Liu, Shew Fan, 2016. "Bias correction and refined inferences for fixed effects spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 52-72.
    8. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    9. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    10. Fei Jin & Lung‐fei Lee & Kai Yang, 2024. "Best linear and quadratic moments for spatial econometric models with an application to spatial interdependence patterns of employment growth in US counties," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 640-658, June.
    11. Mustafa Kiziltan & Ahmet Burcin Yereli, 2023. "Evaluating local fiscal capacity and fiscal effort of Turkish local governments: Evidence from spatial panel data analysis," Economic Change and Restructuring, Springer, vol. 56(1), pages 441-472, February.
    12. Paul Elhorst & Solmaria Halleck Vega, 2013. "On spatial econometric models, spillover effects, and W," ERSA conference papers ersa13p222, European Regional Science Association.
    13. De Siano, Rita & Sapio, Alessandro, 2022. "Spatial merit order effects of renewables in the Italian power exchange," Energy Economics, Elsevier, vol. 108(C).
    14. Wang, Wei & Lee, Lung-Fei & Bao, Yan, 2018. "GMM estimation of the spatial autoregressive model in a system of interrelated networks," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 167-198.
    15. Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric estimation and testing of smooth coefficient spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
    16. Marbuah, George & Amuakwa-Mensah, Franklin, 2017. "Spatial analysis of emissions in Sweden," Energy Economics, Elsevier, vol. 68(C), pages 383-394.
    17. Marcos Herrera & Jesus Mur & Manuel Ruiz-Marin, 2017. "A Comparison Study on Criteria to Select the Most Adequate Weighting Matrix," Working Papers 18, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    18. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    19. Kotyrlo, Elena, 2016. "Space-time dynamics of fertility and commuting," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 41, pages 78-95.
    20. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2006. "The Use of Spatial Filtering Techniques: The Spatial and Space-time Structure of German Unemployment Data," Tinbergen Institute Discussion Papers 06-049/3, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01090-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.