IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i2d10.1007_s00180-019-00925-8.html
   My bibliography  Save this article

Application of the sequential matrix diagonalization algorithm to high-dimensional functional MRI data

Author

Listed:
  • Manuel Carcenac

    (Independent Researcher)

  • Soydan Redif

    (European University of Lefke)

Abstract

This paper introduces an adaptation of the sequential matrix diagonalization (SMD) method to high-dimensional functional magnetic resonance imaging (fMRI) data. SMD is currently the most efficient statistical method to perform polynomial eigenvalue decomposition. Unfortunately, with current implementations based on dense polynomial matrices, the algorithmic complexity of SMD is intractable and it cannot be applied as such to high-dimensional problems. However, for certain applications, these polynomial matrices are mostly filled with null values and we have consequently developed an efficient implementation of SMD based on a GPU-parallel representation of sparse polynomial matrices. We then apply our “sparse SMD” to fMRI data, i.e. the temporal evolution of a large grid of voxels (as many as 29,328 voxels). Because of the energy compaction property of SMD, practically all the information is concentrated by SMD on the first polynomial principal component. Brain regions that are activated over time are thus reconstructed with great fidelity through analysis-synthesis based on the first principal component only, itself in the form of a sequence of polynomial parameters.

Suggested Citation

  • Manuel Carcenac & Soydan Redif, 2020. "Application of the sequential matrix diagonalization algorithm to high-dimensional functional MRI data," Computational Statistics, Springer, vol. 35(2), pages 579-605, June.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00925-8
    DOI: 10.1007/s00180-019-00925-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00925-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00925-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00925-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.