IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i2d10.1007_s00180-019-00904-z.html
   My bibliography  Save this article

An algorithm for finding efficient test-control block designs with correlated observations

Author

Listed:
  • Saeid Pooladsaz

    (Isfahan University of Technology)

  • Mahboobeh Doosti-Irani

    (Isfahan University of Technology)

Abstract

The theory of optimal test-control block designs provides guidance on treatments allocation in experimental units. However, it is theoretically difficult to find them; therefore, the availability of an efficient and user-friendly algorithm for finding the optimal designs is essential for both researchers and practitioners. This paper describes an algorithm for constructing efficient test-control incomplete block designs with correlated observations. In order to evaluate the algorithm, we compare our results with the optimal designs presented in some published papers. An advantage of our algorithm is its independency to the size of blocks and the structure of correlation. Also, it takes to run between 30 s and 10 min depending on the type of CPU processor and the design.

Suggested Citation

  • Saeid Pooladsaz & Mahboobeh Doosti-Irani, 2020. "An algorithm for finding efficient test-control block designs with correlated observations," Computational Statistics, Springer, vol. 35(2), pages 821-836, June.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00904-z
    DOI: 10.1007/s00180-019-00904-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00904-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00904-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang Li & Daniel C. Coster, 2014. "A Simulated Annealing Algorithm for D-Optimal Design for 2-Way and 3-Way Polynomial Regression with Correlated Observations," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen J. Walsh & John J. Borkowski, 2022. "Improved G -Optimal Designs for Small Exact Response Surface Scenarios: Fast and Efficient Generation via Particle Swarm Optimization," Mathematics, MDPI, vol. 10(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:2:d:10.1007_s00180-019-00904-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.