IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i3d10.1007_s00180-017-0734-2.html
   My bibliography  Save this article

Predicting measurements at unobserved locations in an electrical transmission system

Author

Listed:
  • Dirk Surmann

    (TU Dortmund University)

  • Uwe Ligges

    (TU Dortmund University)

  • Claus Weihs

    (TU Dortmund University)

Abstract

Electrical transmission systems consist of a huge number of locations (nodes) with different types of measurements available. Our aim is to derive a subset of nodes which contains almost sufficient information to describe the whole energy network. We derive a parameter set which characterises every single measuring location or node, respectively. Via analysing the behaviour of each node with respect to its neighbours, we construct a feasible random field metamodel over the whole transmission system. The metamodel is used to smooth the measurements across the network. In the next step we work with a subset of locations to predict the unobserved ones. We derive different graph kernels to define the missing covariance matrix from the neighbourhood structures of the network. This results in a metamodel that is able to smooth observed and predict unobserved locations in a spatial domain with non-isotropic distance functions.

Suggested Citation

  • Dirk Surmann & Uwe Ligges & Claus Weihs, 2018. "Predicting measurements at unobserved locations in an electrical transmission system," Computational Statistics, Springer, vol. 33(3), pages 1159-1172, September.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-017-0734-2
    DOI: 10.1007/s00180-017-0734-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0734-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0734-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans A. Kestler & Bernd Bischl & Matthias Schmid, 2018. "Proceedings of Reisensburg 2014–2015," Computational Statistics, Springer, vol. 33(3), pages 1125-1126, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-017-0734-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.