IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v31y2016i2d10.1007_s00180-015-0632-4.html
   My bibliography  Save this article

Improving efficiency of data augmentation algorithms using Peskun’s theorem

Author

Listed:
  • Vivekananda Roy

    (Iowa State University)

Abstract

Data augmentation (DA) algorithm is a widely used Markov chain Monte Carlo algorithm. In this paper, an alternative to DA algorithm is proposed. It is shown that the modified Markov chain is always more efficient than DA in the sense that the asymptotic variance in the central limit theorem under the alternative chain is no larger than that under DA. The modification is based on Peskun’s (Biometrika 60:607–612, 1973) result which shows that asymptotic variance of time average estimators based on a finite state space reversible Markov chain does not increase if the Markov chain is altered by increasing all off-diagonal probabilities. In the special case when the state space or the augmentation space of the DA chain is finite, it is shown that Liu’s (Biometrika 83:681–682, 1996) modified sampler can be used to improve upon the DA algorithm. Two illustrative examples, namely the beta-binomial distribution, and a model for analyzing rank data are used to show the gains in efficiency by the proposed algorithms.

Suggested Citation

  • Vivekananda Roy, 2016. "Improving efficiency of data augmentation algorithms using Peskun’s theorem," Computational Statistics, Springer, vol. 31(2), pages 709-728, June.
  • Handle: RePEc:spr:compst:v:31:y:2016:i:2:d:10.1007_s00180-015-0632-4
    DOI: 10.1007/s00180-015-0632-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-015-0632-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-015-0632-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Brook & G. J. G. Upton, 1974. "Biases in Local Government Elections Due to Position on the Ballot Paper," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(3), pages 414-419, November.
    2. Roy, Vivekananda, 2014. "Efficient estimation of the link function parameter in a robust Bayesian binary regression model," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 87-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Yu, 2000. "Bayesian analysis of order-statistics models for ranking data," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 281-299, September.
    2. Dipankar Das, 2023. "A Model of Competitive Assortment Planning Algorithm," Papers 2307.09479, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:31:y:2016:i:2:d:10.1007_s00180-015-0632-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.