IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v27y2012i1p69-82.html
   My bibliography  Save this article

Goodness-of-fit for a concentrated von Mises-Fisher distribution

Author

Listed:
  • Adelaide Figueiredo

Abstract

No abstract is available for this item.

Suggested Citation

  • Adelaide Figueiredo, 2012. "Goodness-of-fit for a concentrated von Mises-Fisher distribution," Computational Statistics, Springer, vol. 27(1), pages 69-82, March.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:1:p:69-82
    DOI: 10.1007/s00180-011-0238-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-011-0238-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-011-0238-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boulerice, Bernard & Ducharme, Gilles R., 1997. "Smooth Tests of Goodness-of-Fit for Directional and Axial Data," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 154-175, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    3. Jupp, P.E. & Kume, A., 2020. "Measures of goodness of fit obtained by almost-canonical transformations on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    4. Figueiredo, Adelaide & Gomes, Paolo, 2006. "Goodness-of-fit methods for the bipolar Watson distribution defined on the hypersphere," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 142-152, January.
    5. Ducharme, Gilles R. & Lafaye de Micheaux, Pierre, 2020. "A goodness-of-fit test for elliptical distributions with diagnostic capabilities," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:1:p:69-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.