IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v26y2020i1d10.1007_s10588-019-09301-9.html
   My bibliography  Save this article

k-step betweenness centrality

Author

Listed:
  • Melda Kevser Akgün

    (Ankara Yıldırım Beyazıt University)

  • Mustafa Kemal Tural

    (Middle East Technical University)

Abstract

The notions of betweenness centrality (BC) and group betweenness centrality (GBC) are widely used in social network analyses. We introduce variants of them; namely, the k-step BC and k-step GBC. The k-step GBC of a group of vertices in a network is a measure of the likelihood that at least one group member will get the information communicated between pairs of vertices through shortest paths within the first k steps of the start of the communication. The k-step GBC of a single vertex is the k-step BC of that vertex. The introduced centrality measures may find uses in applications where it is important or critical to obtain the information within a fixed time of the start of the communication. For the introduced centrality measures, we propose an algorithm that can compute successively the k-step GBC of several groups of vertices. The performance of the proposed algorithm is evaluated through computational experiments. The use of the new BC measures leads to an earlier control of the information (virus, malware, or rumor) before it spreads through the network.

Suggested Citation

  • Melda Kevser Akgün & Mustafa Kemal Tural, 2020. "k-step betweenness centrality," Computational and Mathematical Organization Theory, Springer, vol. 26(1), pages 55-87, March.
  • Handle: RePEc:spr:comaot:v:26:y:2020:i:1:d:10.1007_s10588-019-09301-9
    DOI: 10.1007/s10588-019-09301-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-019-09301-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-019-09301-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rysz, Maciej & Mahdavi Pajouh, Foad & Pasiliao, Eduardo L., 2018. "Finding clique clusters with the highest betweenness centrality," European Journal of Operational Research, Elsevier, vol. 271(1), pages 155-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    2. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    3. Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
    4. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    5. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    6. Matsypura, Dmytro & Veremyev, Alexander & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2023. "Finding the most degree-central walks and paths in a graph: Exact and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1021-1036.
    7. Zhong, Haonan & Mahdavi Pajouh, Foad & Prokopyev, Oleg A., 2021. "Finding influential groups in networked systems: The most degree-central clique problem," Omega, Elsevier, vol. 101(C).
    8. Ali Tosyali & Jeongsub Choi & Byunghoon Kim & Hoshin Lee & Myong K. Jeong, 2021. "A dynamic graph-based approach to ranking firms for identifying key players using inter-firm transactions," Annals of Operations Research, Springer, vol. 303(1), pages 5-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:26:y:2020:i:1:d:10.1007_s10588-019-09301-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.