Explaining the emergence of online popularity through a model of information diffusion
Author
Abstract
Suggested Citation
DOI: 10.1007/s10588-017-9253-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- repec:cup:cbooks:9780511771576 is not listed on IDEAS
- Zongyang Ma & Aixin Sun & Gao Cong, 2013. "On predicting the popularity of newly emerging hashtags in Twitter," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(7), pages 1399-1410, July.
- Zongyang Ma & Aixin Sun & Gao Cong, 2013. "On predicting the popularity of newly emerging hashtags in Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(7), pages 1399-1410, July.
- Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Raúl M. Ortiz-Gaona & Marcos Postigo-Boix & José L. Melús-Moreno, 2021. "Extent prediction of the information and influence propagation in online social networks," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 195-230, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jabłońska-Sabuka, Matylda & Sitarz, Robert & Kraslawski, Andrzej, 2014. "Forecasting research trends using population dynamics model with Burgers’ type interaction," Journal of Informetrics, Elsevier, vol. 8(1), pages 111-122.
- Ali Daud & Muhammad Ahmad & M. S. I. Malik & Dunren Che, 2015. "Using machine learning techniques for rising star prediction in co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1687-1711, February.
- Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
- Sharad Goel & Ashton Anderson & Jake Hofman & Duncan J. Watts, 2016. "The Structural Virality of Online Diffusion," Management Science, INFORMS, vol. 62(1), pages 180-196, January.
- Cui, Hao & Kertész, János, 2023. "“Born in Rome” or “Sleeping Beauty”: Emergence of hashtag popularity on the Chinese microblog Sina Weibo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
- Jaebong Son & Jintae Lee & Kai R. Larsen & Jiyoung Woo, 2020. "Understanding the uncertainty of disaster tweets and its effect on retweeting: The perspectives of uncertainty reduction theory and information entropy," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1145-1161, October.
- Paige Brown Jarreau & Imogene A Cancellare & Becky J Carmichael & Lance Porter & Daniel Toker & Samantha Z Yammine, 2019. "Using selfies to challenge public stereotypes of scientists," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-23, May.
- Wai Hong Tan & Feng Chen, 2021. "Predicting the popularity of tweets using internal and external knowledge: an empirical Bayes type approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 335-352, June.
- Arora, Anuja & Bansal, Shivam & Kandpal, Chandrashekhar & Aswani, Reema & Dwivedi, Yogesh, 2019. "Measuring social media influencer index- insights from facebook, Twitter and Instagram," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 86-101.
- Son, Jaebong & Lee, Hyung Koo & Jin, Sung & Lee, Jintae, 2019. "Content features of tweets for effective communication during disasters: A media synchronicity theory perspective," International Journal of Information Management, Elsevier, vol. 45(C), pages 56-68.
- Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
- Martin L. Weitzman, 2015.
"A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering,"
Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
- Martin Weitzman, 2012. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," NBER Working Papers 18622, National Bureau of Economic Research, Inc.
- Weitzman, Martin L., 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scholarly Articles 17368469, Harvard University Department of Economics.
- Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
- Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
- Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
- Bernd (B.) Heidergott & Jia-Ping Huang & Ines (I.) Lindner, 2018. "Naive Learning in Social Networks with Random Communication," Tinbergen Institute Discussion Papers 18-018/II, Tinbergen Institute.
- Johannes M. Bauer & Michael Latzer, 2016. "The economics of the Internet: an overview," Chapters, in: Johannes M. Bauer & Michael Latzer (ed.), Handbook on the Economics of the Internet, chapter 1, pages 3-20, Edward Elgar Publishing.
- Kobayashi, Teruyoshi & Takaguchi, Taro, 2018.
"Identifying relationship lending in the interbank market: A network approach,"
Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
- Teruyoshi Kobayashi & Taro Takaguchi, 2017. "Identifying relationship lending in the interbank market: A network approach," Papers 1708.08594, arXiv.org, revised Apr 2018.
- Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
- Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
More about this item
Keywords
Information diffusion; Online social media; Popularity dynamics; Branching models; Epidemic models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:24:y:2018:i:2:d:10.1007_s10588-017-9253-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.