IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v19y2013i3d10.1007_s10588-012-9136-8.html
   My bibliography  Save this article

Inducing models of behavior from expert task performance in virtual environments

Author

Listed:
  • Bradley J. Best

    (Adaptive Cognitive Systems)

Abstract

We developed an end-to-end process for inducing models of behavior from expert task performance through in-depth case study. A subject matter expert (SME) performed navigational and adversarial tasks in a virtual tank combat simulation, using the dTank and Unreal platforms. Using eye tracking and Cognitive Task Analysis, we identified the key goals pursued by and attributes used by the SME, including reliance on an egocentric spatial representation, and on the fly re-representation of terrain in qualitative terms such as “safe” and “risky”. We demonstrated methods for automatic extraction of these qualitative higher-order features from combinations of surface features present in the simulation, producing a terrain map that was visually similar to the SME annotated map. The application of decision-tree and instance-based machine learning methods to the transformed task data supported prediction of SME task selection with greater than 95 % accuracy, and SME action selection at a frequency of 10 Hz with greater than 63 % accuracy, with real time constraints placing limits on algorithm selection. A complete processing model is presented for a path driving task, with the induced generative model deviating from the SME chosen path by less than 2 meters on average. The derived attributes also enabled environment portability, with path driving models induced from dTank performance and deployed in Unreal demonstrating equivalent accuracy to those induced and deployed completely within Unreal.

Suggested Citation

  • Bradley J. Best, 2013. "Inducing models of behavior from expert task performance in virtual environments," Computational and Mathematical Organization Theory, Springer, vol. 19(3), pages 370-401, September.
  • Handle: RePEc:spr:comaot:v:19:y:2013:i:3:d:10.1007_s10588-012-9136-8
    DOI: 10.1007/s10588-012-9136-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-012-9136-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-012-9136-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:19:y:2013:i:3:d:10.1007_s10588-012-9136-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.