IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v12y2006i4d10.1007_s10588-006-8872-z.html
   My bibliography  Save this article

A cognitively based simulation of academic science

Author

Listed:
  • Isaac Naveh

    (University of Missouri)

  • Ron Sun

    (Rensselaer Polytechnic Institute)

Abstract

The models used in social simulation to date have mostly been very simplistic cognitively, with little attention paid to the details of individual cognition. This work proposes a more cognitively realistic approach to social simulation. It begins with a model created by Gilbert (1997) for capturing the growth of academic science. Gilbert’s model, which was equation-based, is replaced here by an agent-based model, with the cognitive architecture CLARION providing greater cognitive realism. Using this cognitive agent model, results comparable to previous simulations and to human data are obtained. It is found that while different cognitive settings may affect the aggregate number of scientific articles produced, they do not generally lead to different distributions of number of articles per author. The paper concludes with a discussion of the correspondence between the model and the constructivist view of academic science. It is argued that using more cognitively realistic models in simulations may lead to novel insights.

Suggested Citation

  • Isaac Naveh & Ron Sun, 2006. "A cognitively based simulation of academic science," Computational and Mathematical Organization Theory, Springer, vol. 12(4), pages 313-337, December.
  • Handle: RePEc:spr:comaot:v:12:y:2006:i:4:d:10.1007_s10588-006-8872-z
    DOI: 10.1007/s10588-006-8872-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-006-8872-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-006-8872-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Federico Cecconi & Domenico Parisi, 1998. "Individual Versus Social Survival Strategies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 1(2), pages 1-1.
    2. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    3. N. Gilbert, 1997. "A Simulation of the Structure of Academic Science," Sociological Research Online, , vol. 2(2), pages 91-105, June.
    4. Ron Sun & Isaac Naveh, 2004. "Simulating Organizational Decision-Making Using a Cognitively Realistic Agent Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(3), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian W. Kulik & Timothy Baker, 2008. "Putting the organization back into computational organization theory: a complex Perrowian model of organizational action," Computational and Mathematical Organization Theory, Springer, vol. 14(2), pages 84-119, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
    2. David O'Sullivan & Mordechai Haklay, 2000. "Agent-Based Models and Individualism: Is the World Agent-Based?," Environment and Planning A, , vol. 32(8), pages 1409-1425, August.
    3. Paola Tubaro, 2011. "Computational Economics," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 10, Edward Elgar Publishing.
    4. Ron Sun & Isaac Naveh, 2007. "Social institution, cognition, and survival: a cognitive–social simulation," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 6(2), pages 115-142, November.
    5. Petra Ahrweiler, 2017. "Agent-based simulation for science, technology, and innovation policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 391-415, January.
    6. Stefano Balbi & Carlo Giupponi, 2009. "Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability," Working Papers 2009_15, Department of Economics, University of Venice "Ca' Foscari".
    7. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    8. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    9. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    10. Carayol, Nicolas & Dalle, Jean-Michel, 2007. "Sequential problem choice and the reward system in Open Science," Structural Change and Economic Dynamics, Elsevier, vol. 18(2), pages 167-191, June.
    11. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    12. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    13. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    14. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    15. Yanuar Nugroho & Gindo Tampubolon, 2008. "Network Dynamics in the Transition to Democracy: Mapping Global Networks of Contemporary Indonesian Civil Society," Sociological Research Online, , vol. 13(5), pages 144-160, September.
    16. Barr, Jason & Saraceno, Francesco, 2009. "Organization, learning and cooperation," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 39-53, May.
    17. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    18. Nannen, Volker & van den Bergh, Jeroen C. J. M. & Eiben, A. E., 2008. "Impact of Environmental Dynamics on Economic Evolution: Uncertainty, Risk Aversion, and Policy," MPRA Paper 13834, University Library of Munich, Germany.
    19. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. G. Fagiolo & G. Dosi & R. Gabriele, 2004. "Matching, Bargaining, And Wage Setting In An Evolutionary Model Of Labor Market And Output Dynamics," World Scientific Book Chapters, in: Roberto Leombruni & Matteo Richiardi (ed.), Industry And Labor Dynamics The Agent-Based Computational Economics Approach, chapter 5, pages 59-89, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:12:y:2006:i:4:d:10.1007_s10588-006-8872-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.