IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i12d10.1007_s10584-023-03639-5.html
   My bibliography  Save this article

Assessing carbon cycle projections from complex and simple models under SSP scenarios

Author

Listed:
  • Irina Melnikova

    (Université Paris-Saclay
    National Institute for Environmental Studies (NIES))

  • Philippe Ciais

    (Université Paris-Saclay)

  • Olivier Boucher

    (Sorbonne Université / CNRS)

  • Katsumasa Tanaka

    (Université Paris-Saclay
    National Institute for Environmental Studies (NIES))

Abstract

Both full-fledged Earth system models (ESMs) and simple climate models (SCMs) have been used to investigate climate change for future representative CO2 concentration pathways under the sixth phase of the Coupled Model Intercomparison Project. Here, we explore to what extent complex and simple models are consistent in their carbon cycle response in concentration-driven simulations. Although ESMs and SCMs exhibit similar compatible fossil fuel CO2 emissions, ESMs systematically estimate a lower ocean carbon uptake than SCMs in the historical period and future scenarios. The ESM and SCM differences are especially large under low-concentration and overshoot scenarios. Furthermore, ESMs and SCMs deviate in their land carbon uptake estimates, but the differences are scenario-dependent. These differences are partly driven by a few model outliers (ESMs and SCMs) and the procedure of observational constraining that is present in the majority of SCMs but not applied in ESMs. The differences in land uptake arise from the difference in the way land-use change (LUC) emissions are calculated and different assumptions on how the carbon cycle feedbacks are defined, possibly reflecting the treatment of nitrogen limitation of biomass growth and historical calibration of SCMs. The differences in ocean uptake, which are especially large in overshoot scenarios, may arise from the faster mixing of carbon from the surface to the deep ocean in SCMs than in ESMs. We also discuss the inconsistencies that arise when converting CO2 emissions from integrated assessment models (IAMs) to CO2 concentrations inputs for ESMs, which typically rely on a single SCM. We further highlight the discrepancies in LUC emission estimates between models of different complexity, particularly ESMs and IAMs, and encourage climate modeling groups to address these potential areas for model improvement.

Suggested Citation

  • Irina Melnikova & Philippe Ciais & Olivier Boucher & Katsumasa Tanaka, 2023. "Assessing carbon cycle projections from complex and simple models under SSP scenarios," Climatic Change, Springer, vol. 176(12), pages 1-26, December.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:12:d:10.1007_s10584-023-03639-5
    DOI: 10.1007/s10584-023-03639-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03639-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03639-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:12:d:10.1007_s10584-023-03639-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.