IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v174y2022i1d10.1007_s10584-022-03432-w.html
   My bibliography  Save this article

Climate change alters aging patterns of reservoir aquatic habitats

Author

Listed:
  • Leandro E. Miranda

    (U.S. Geological Survey, Mississippi Cooperative Fish and Wildlife Research Unit)

  • Nicky M. Faucheux

    (Mississippi Cooperative Fish and Wildlife Research Unit)

Abstract

Two slow-moving developments are threatening reservoir aquatic habitats globally: aging and climate change. These events are projected to transform reservoir aquatic habitats in various and often unpredictable ways. Aging affects in-lake habitats directly, whereas climate change affects both in-lake and off-lake conditions. Climate change is expected to accelerate and, in some instances, possibly decelerate aging. Aging can be indexed as functional age, an index that signals the position of a reservoir along its lifespan relying on in-lake descriptors of aquatic habitat. Using existing habitat datasets and climate projections, we developed semi-quantitative predictions about the effect of climate change on reservoir functional age in the USA. Driven by increased warming, functional age was predicted to increase latitudinally from south to north with no obvious longitudinal gradient. Functional age also changed with precipitation, increasing latitudinally from south to north and longitudinally in the east and west but decreasing in the central USA. Our projections are tentative because of the uncertain nature of reservoir aging and climate change sciences, as well as the inexactness of available data and models. We review general strategies suitable for systematically dealing with the unpredictable and constantly changing conditions expected to occur this century as reservoirs certainly continue to get older, within the scope of uncertain climate change projections.

Suggested Citation

  • Leandro E. Miranda & Nicky M. Faucheux, 2022. "Climate change alters aging patterns of reservoir aquatic habitats," Climatic Change, Springer, vol. 174(1), pages 1-15, September.
  • Handle: RePEc:spr:climat:v:174:y:2022:i:1:d:10.1007_s10584-022-03432-w
    DOI: 10.1007/s10584-022-03432-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03432-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03432-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Lenhardt & G. Markovic & Z. Gacic, 2009. "Decline in the Index of Biotic Integrity of the Fish Assemblage as a Response to Reservoir Aging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1713-1723, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huđek, Helena & Žganec, Krešimir & Pusch, Martin T., 2020. "A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Milica Stojković & Djuradj Milošević & Snežana Simić & Vladica Simić, 2014. "Using a Fish-Based Model to Assess the Ecological Status of Lotic Systems in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4615-4629, October.
    3. N. Adam & S. Erpicum & P. Archambeau & M. Pirotton & B. Dewals, 2015. "Stochastic Modelling of Reservoir Sedimentation in a Semi-Arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 785-800, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:174:y:2022:i:1:d:10.1007_s10584-022-03432-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.